241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm Nucleus Note=Shuttles between the nucleusand the cytoplasm Translocated into the nucleus upon tyrosinephosphorylation and dimerization, in response to signaling byactivated FGFR1, FGFR2, FGFR3 or FGFR4 Constitutive nuclearpresence is independent of tyrosine phosphorylation Predominantlypresent in the cytoplasm without stimuli Upon leukemia inhibitoryfactor (LIF) stimulation, accumulates in the nucleus The complexcomposed of BART and ARL2 plays an important role in the nucleartranslocation and retention of STAT3 Identified in a complex withLYN and PAG1
Function (UniProt annotation)
Signal transducer and transcription activator thatmediates cellular responses to interleukins, KITLG/SCF, LEP andother growth factors (PubMed:10688651, PubMed:12359225,PubMed:12873986, PubMed:15194700, PubMed:17344214,PubMed:18242580, PubMed:23084476) Once activated, recruitscoactivators, such as NCOA1 or MED1, to the promoter region of thetarget gene (PubMed:17344214) May mediate cellular responses toactivated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986) Bindsto the interleukin-6 (IL-6)-responsive elements identified in thepromoters of various acute-phase protein genes (PubMed:12359225)Activated by IL31 through IL31RA (PubMed:15194700) Acts as aregulator of inflammatory response by regulating differentiationof naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells(Treg): deacetylation and oxidation of lysine residues by LOXL3,leads to disrupt STAT3 dimerization and inhibit its transcriptionactivity (PubMed:28065600) Involved in cell cycle regulation byinducing the expression of key genes for the progression from G1to S phase, such as CCND1 (PubMed:17344214) Mediates the effectsof LEP on melanocortin production, body energy homeostasis andlactation (By similarity) May play an apoptotic role bytransctivating BIRC5 expression under LEP activation(PubMed:18242580) Cytoplasmic STAT3 represses macroautophagy byinhibiting EIF2AK2/PKR activity (PubMed:23084476) Plays a crucialrole in basal beta cell functions, such as regulation of insulinsecretion (By similarity)
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. EGFR also serves as a stimulus for cancer growth. EGFR gene mutations and protein overexpression, both of which activate down- stream pathways, are associated with cancers, especially lung cancer. Several tyrosine kinase inhibitor (TKI) therapies against EGFR are currently administered and are initially effective in cancer patients who have EGFR mutations or aberrant activation of EGFR. However, the development of TKI resistance is common and results in the recurrence of tumors. Studies over the last decade have identified mechanisms that drive resistance to EGFR TKI treatment. Most outstanding mechanisms are: the secondary EGFR mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, etc.
Inflammatory immune response requires the recruitment of leukocytes to the site of inflammation upon foreign insult. Chemokines are small chemoattractant peptides that provide directional cues for the cell trafficking and thus are vital for protective host response. In addition, chemokines regulate plethora of biological processes of hematopoietic cells to lead cellular activation, differentiation and survival.The chemokine signal is transduced by chemokine receptors (G-protein coupled receptors) expressed on the immune cells. After receptor activation, the alpha- and beta-gamma-subunits of G protein dissociate to activate diverse downstream pathways resulting in cellular polarization and actin reorganization. Various members of small GTPases are involved in this process. Induction of nitric oxide and production of reactive oxygen species are as well regulated by chemokine signal via calcium mobilization and diacylglycerol production.
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis. It consists of two subunits: an inducibly-expressed HIF-1alpha subunit and a constitutively-expressed HIF-1beta subunit. Under normoxia, HIF-1 alpha undergoes hydroxylation at specific prolyl residues which leads to an immediate ubiquitination and subsequent proteasomal degradation of the subunit. In contrast, under hypoxia, HIF-1 alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 encode proteins that increase O2 delivery and mediate adaptive responses to O2 deprivation. Despite its name, HIF-1 is induced not only in response to reduced oxygen availability but also by other stimulants, such as nitric oxide, or various growth factors.
The forkhead box O (FOXO) family of transcription factors regulates the expression of genes in cellular physiological events including apoptosis, cell-cycle control, glucose metabolism, oxidative stress resistance, and longevity. A central regulatory mechanism of FOXO proteins is phosphorylation by the serine-threonine kinase Akt/protein kinase B (Akt/PKB), downstream of phosphatidylinositol 3-kinase (PI3K), in response to insulin or several growth factors. Phosphorylation at three conserved residues results in the export of FOXO proteins from the nucleus to the cytoplasm, thereby decreasing expression of FOXO target genes. In contrast, the stress-activated c-Jun N-terminal kinase (JNK) and the energy sensing AMP-activated protein kinase (AMPK), upon oxidative and nutrient stress stimuli phosphorylate and activate FoxOs. Aside from PKB, JNK and AMPK, FOXOs are regulated by multiple players through several post-translational modifications, including phosphorylation, but also acetylation, methylation and ubiquitylation.
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
Pluripotent stem cells (PSCs) are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. The types of PSCs known to date include embryonic stem (ES) and induced pluripotent stem (iPS) cells. ES cells are derived from the inner cell mass (ICM) of blastocyst-stage embryos. iPS cells are generated by reprogramming somatic cells back to pluripotent state with defined reprogramming factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors). PSCs including ES cells and iPS cells are categorized into two groups by their morphology, gene expression profile and external signal dependence. Conventional mouse-type ES/iPS cells are called 'naive state' cells. They are mainly maintained under the control of LIF and BMP signaling. On the other hand, human-type ES/iPS cells, which are in need of Activin and FGF signaling, are termed 'primed state'. However, these signaling pathways converge towards the activation of a core transcriptional network that is similar in both groups and involves OCt4, Nanog and Sox2. The three transcription factors and their downstream target genes coordinately promote self-renewal and pluripotency.
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is one of a handful of pleiotropic cascades used to transduce a multitude of signals for development and homeostasis in animals, from humans to flies. In mammals, the JAK/STAT pathway is the principal signaling mechanism for a wide array of cytokines and growth factors. Following the binding of cytokines to their cognate receptor, STATs are activated by members of the JAK family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. In addition to the activation of STATs, JAKs mediate the recruitment of other molecules such as the MAP kinases, PI3 kinase etc. These molecules process downstream signals via the Ras-Raf-MAP kinase and PI3 kinase pathways which results in the activation of additional transcription factors.
Interleukin (IL)-17-producing helper T (Th17) cells serve as a subset of CD4+ T cells involved in epithelial cell- and neutrophil mediated immune responses against extracellular microbes and in the pathogenesis of autoimmune diseases. In vivo, Th17 differentiation requires antigen presentation and co-stimulation, and activation of antigen presenting-cells (APCs) to produce TGF-beta, IL-6, IL-1, IL-23 and IL-21. This initial activation results in the activation and up-regulation of STAT3, ROR(gamma)t and other transcriptional factors in CD4+ T cells, which bind to the promoter regions of the IL-17, IL-21 and IL-22 genes and induce IL-17, IL-21 and IL-22. In contrast, the differentiation of Th17 cells and their IL-17 expression are negatively regulated by IL-2, Th2 cytokine IL-4, IL-27 and Th1 cytokine IFN-gamma through STAT5, STAT6 and STAT1 activation, respectively. Retinoid acid and the combination of IL-2 and TGF-beta upregulate Foxp3, which also downregulates cytokines like IL-17 and IL-21. The inhibition of Th17 differentiation may serve as a protective strategy to 'fine-tune' the expression IL-17 so it does not cause excessive inflammation. Thus, balanced differentiation of Th cells is crucial for immunity and host protection.
Prolactin (PRL) is a polypeptide hormone known to be involved in a wide range of biological functions including osmoregulation, lactation, reproduction, growth and development, endocrinology and metabolism, brain and behavior, and immunomodulation. PRL mediates its action through PRLR, a transmembrane protein of the hematopoietin cytokine receptor superfamily. At the protein level, the long PRLR isoform (long-R) and several short PRLR isoforms (short-R) have been detected. Acting through the long-R, PRL activates many signaling cascades including Jak2/Stat, the major cascade, Src kinase, phosphatidylinositol-3-kinase (PI3K)/AKT, and mitogen-activated protein kinase (MAPK) pathways. PRL cannot activate Jak2/Stat5 through the short-R, but can activate pathways including MAPK and PI3K pathways.
Increased adipocyte volume and number are positively correlated with leptin production, and negatively correlated with production of adiponectin.Leptin is an important regulator of energy intake and metabolic rate primarily by acting at hypothalamic nuclei. Leptin exerts its anorectic effects by modulating the levels of neuropeptides such as NPY, AGRP, and alpha-MSH. This leptin action is through the JAK kinase, STAT3 phosphorylation, and nuclear transcriptional effect.Adiponectin lowers plasma glucose and FFAs. These effects are partly accounted for by adiponectin-induced AMPK activation, which in turn stimulates skeletal muscle fatty acid oxidation and glucose uptake. Furthermore, activation of AMPK by adiponectin suppresses endogenous glucose production, concomitantly with inhibition of PEPCK and G6Pase expression.The proinflammatory cytokine TNFalpha has been implicated as a link between obesity and insulin resistance. TNFalpha interferes with early steps of insulin signaling. Several data have shown that TNFalpha inhibits IRS1 tyrosine phosphorylation by promoting its serine phosphorylation. Among the serine/threonine kinases activated by TNFalpha, JNK, mTOR and IKK have been shown to be involved in this phosphorylation.
Insulin resistance is a condition where cells become resistant to the effects of insulin. It is often found in people with health disorders, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. In this diagram multiple mechanisms underlying insulin resistance are shown: (a) increased phosphorylation of IRS (insulin receptor substrate) protein through serine/threonine kinases, such as JNK1 and IKKB, and protein kinase C, (b) increased IRS-1 proteasome degradation via mTOR signaling pathway, (c) decreased activation of signaling molecules including PI3K and AKT, (d) increase in activity of phosphatases including PTPs, PTEN, and PP2A. Regulatory actions such as oxidative stress, mitochondrial dysfunction, accumulation of intracellular lipid derivatives (diacylglycrol and ceramides), and inflammation (via IL-6 and TNFA) contribute to these mechanisms. Consequently, insulin resistance causes reduced GLUT4 translocation, resulting in glucose takeup and glycogen synthesis in skeletal muscle as well as increased hepatic gluconeogenesis and decreased glycogen synthesis in liver. At the bottom of the diagram, interplay between O-GlcNAcylation and serine/threonine phosphorylation is shown. Studies suggested that elevated O-GlcNAc level was correlated to high glucose-induced insulin resistance. Donor UDP-GlcNAc is induced through hexosamine biosynthesis pathway and added to proteins by O-GlcNAc transferase. Elevation of O-GlcNAc modification alters phosphorylation and function of key insulin signaling proteins including IRS-1, PI3K, PDK1, Akt and other transcription factor and cofactors, resulting in the attenuation of insulin signaling cascade.
Advanced glycation end products (AGEs) are a complex group of compounds produced through the non-enzymatic glycation and oxidation of proteins, lipids and nucleic acids, primarily due to aging and under certain pathologic condition such as huperglycemia. Some of the best chemically characterized AGEs include N-epsilon-carboxy-methyl-lysine (CML), N-epsilon-carboxy-ethyl-lysine (CEL), and Imidazolone. The major receptor for AGEs, known as receptor for advanced glycation end products (RAGE or AGER), belongs to the immunoglobulin superfamily and has been described as a pattern recognition receptor. AGE/RAGE signaling elicits activation of multiple intracellular signal pathways involving NADPH oxidase, protein kinase C, and MAPKs, then resulting in NF-kappaB activity. NF-kappa B promotes the expression of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha and a variety of atherosclerosis-related genes, including VCAM-1, tissue factor, VEGF, and RAGE. In addition, JAK-STAT-mediated and PI3K-Akt-dependent pathways are induced via RAGE, which in turn participate in cell proliferation and apoptosis respectively. Hypoxia-mediated induction of Egr-1 was also shown to require the AGE-RAGE interaction. The results of these signal transductions have been reported to be the possible mechanism that initates diabetic complications.
Toxoplasma gondii is an obligate intracellular parasite that is prevalent worldwide. The tachyzoite form acquired by oral ingestion downmodulates proinflammatory signaling pathways via various mechanisms. During early infection, nuclear translocation of NFkB is temporally blocked and p38 MAPK phosphorylation is prevented, suppressing IL-12 production. Another pathway for IL-12 induction occurs through CCR5 dependent pathway, but parasitic induction of an eicosanoid LXA4 contributes to the downregulation of IL-12. Direct activation of STAT3 by the parasite enhance anti-inflammatory function of IL-10 and TGF beta. T. gondii can cause lifelong chronic infection by establishing an anti-apoptotic environment through induction of bcl-2 or IAPs and by redirecting LDL-mediated cholesterol transport to scavenge nutrients from the host.
Hepatitis C virus (HCV) is a major cause of chronic liver disease. The HCV employ several strategies to perturb host cell immunity. After invasion, HCV RNA genome functions directly as an mRNA in the cytoplasm of the host cell and forms membrane-associated replication complexes along with non-structural proteins. Viral RNA can trigger the RIG-I pathway and interferon production during this process. Translated HCV protein products regulate immune response to inhibit the action of interferon. HCV core and NS5A proteins appear to be the most important molecules with regulatory functions that modulate transcription, cellular proliferation, and apoptosis.
Hepatitis B virus (HBV) is an enveloped virus and contains a partially double-stranded relaxed circular DNA (RC-DNA) genome. After entry into hepatocytes, HBV RC-DNA is transported to the nucleus and converted into a covalently closed circular molecule cccDNA. The cccDNA is the template for transcription of all viral RNAs including the pregenomic RNA (pgRNA), encoding for 7 viral proteins: large, middle, and small envelope proteins (LHBs, MHBs, and SHBs) that form the surface antigen (HBsAg), the core antigen (HBcAg), the e antigen (HBeAg), the HBV polymerase, and the regulatory protein X (HBx). The pgRNA interacts with the viral polymerase protein to initiate the encapsidation into the core particles. Through endoplasmic reticulum, the core particles finish assembling with the envelope proteins and are released. HBV infection leads to a wide spectrum of liver diseases raging from chronic hepatitis, cirrhosis to hepatocellular carcinoma. The mechanism of liver injury is still not clear. However, HBV proteins target host proteins, involved in a variety of functions, thus regulating transcription, cellular signaling cascades, proliferation, differentiation, and apoptosis.
Measles virus (MV) is highly contagious virus that leads infant death worldwide. Humans are the unique natural reservoir for this virus. It causes severe immunosuppression favouring secondary bacterial infections. Several MV proteins have been suggested to disturb host immunity. After infection of host lymphoid cells via SLAM, MV inhibits cytokine response by direct interference with host signaling systems. Three proteins (P, V, and C) associate with Jak/STAT proteins in interferon-triggered pathway and other important proteins related to apoptosis. Interaction between MV and host brings about the shift towards a Th2 response by decreasing IL-12 production and induces lymphopenia by suppressing cell proliferation.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus, and is associated with the pathogenesis of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). Like all other herpesviruses, KSHV displays two modes of life cycle, latency and lytic replication, which are characterized by the patterns of viral gene expression. Genes expressed in latency (LANA, v-cyclin, v-FLIP, Kaposins A, B and C and viral miRNAs) are mainly thought to facilitate the establishment of life long latency in its host and survival against the host innate, and adaptive immune surveillance mechanisms. Among the viral proteins shown to be expressed during lytic replication are potent signaling molecules such as vGPCR, vIL6, vIRFs, vCCLs, K1 and K15, which have been implicated experimentally in the angiogenic and inflammatory phenotype observed in KS lesions. Several of these latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of severe human malignancies.
Epstein-Barr virus (EBV) is a gamma-herpes virus that widely infects human populations predominantly at an early age but remains mostly asymptomatic. EBV has been linked to a wide spectrum of human malignancies, including nasopharyngeal carcinoma and other hematologic cancers, like Hodgkin's lymphoma, Burkitt's lymphoma (BL), B-cell immunoblastic lymphoma in HIV patients, and posttransplant-associated lymphoproliferative diseases. EBV has the unique ability to establish life-long latent infection in primary human B lymphocytes. During latent infection, EBV expresses a small subset of genes, including 6 nuclear antigens (EBNA-1, -2, -3A, -3B, -3C, and -LP), 3 latent membrane proteins (LMP-1, -2A, and -2B), 2 small noncoding RNAs (EBER-1 and 2). On the basis of these latent gene expression, three different latency patterns associated with the types of cancers are recognized.
There is a strong association between viruses and the development of human malignancies. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Via expression of many potent oncoproteins, these tumor viruses promote an aberrant cell-proliferation via modulating cellular cell-signaling pathways and escape from cellular defense system such as blocking apoptosis. Human tumor virus oncoproteins can also disrupt pathways that are necessary for the maintenance of the integrity of host cellular genome. Viruses that encode such activities can contribute to initiation as well as progression of human cancers.
Many proteoglycans (PGs) in the tumor microenvironment have been shown to be key macromolecules that contribute to biology of various types of cancer including proliferation, adhesion, angiogenesis and metastasis, affecting tumor progress. The four main types of proteoglycans include hyaluronan (HA), which does not occur as a PG but in free form, heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), dematan sulfate proteoglycans (DSPG) and keratan sulfate proteoglycans (KSPGs) [BR:00535]. Among these proteoglycans such as HA, acting with CD44, promotes tumor cell growth and migration, whereas other proteoglycans such as syndecans (-1~-4), glypican (-1, -3) and perlecan may interact with growth factors, cytokines, morphogens and enzymes through HS chains [BR: 00536], also leading to tumor growth and invasion. In contrast, some of the small leucine-rich proteolgycans, such as decorin and lumican, can function as tumor repressors, and modulate the signaling pathways by the interaction of their core proteins and multiple receptors.
MicroRNA (miRNA) is a cluster of small non-encoding RNA molecules of 21 - 23 nucleotides in length, which controls gene expression post-transcriptionally either via the degradation of target mRNAs or the inhibition of protein translation. Using high-throughput profiling, dysregulation of miRNAs has been widely observed in different stages of cancer. The upregulation (overexpression) of specific miRNAs could lead to the repression of tumor suppressor gene expression, and conversely the downregulation of specific miRNAs could result in an increase of oncogene expression; both these situations induce subsequent malignant effects on cell proliferation, differentiation, and apoptosis that lead to tumor growth and progress. The miRNA signatures of cancer observed in various studies differ significantly. These inconsistencies occur due to the differences in the study populations and methodologies used. This pathway map shows the summarized results from various studies in 9 cancers, each of which is presented in a review article.
Infiltrating ductal adenocarcinoma is the most common malignancy of the pancreas. When most investigators use the term 'pancreatic cancer' they are referring to pancreatic ductal adenocarcinoma (PDA). Normal duct epithelium progresses to infiltrating cancer through a series of histologically defined precursors (PanINs). The overexpression of HER-2/neu and activating point mutations in the K-ras gene occur early, inactivation of the p16 gene at an intermediate stage, and the inactivation of p53, SMAD4, and BRCA2 occur relatively late. Activated K-ras engages multiple effector pathways. Although EGF receptors are conventionally regarded as upstream activators of RAS proteins, they can also act as RAS signal transducers via RAS-induced autocrine activation of the EGFR family ligands. Moreover, PDA shows extensive genomic instability and aneuploidy. Telomere attrition and mutations in p53 and BRCA2 are likely to contribute to these phenotypes. Inactivation of the SMAD4 tumour suppressor gene leads to loss of the inhibitory influence of the transforming growth factor-beta signalling pathway.
Acute myeloid leukemia (AML) is a disease that is characterized by uncontrolled proliferation of clonal neoplastic cells and accumulation in the bone marrow of blasts with an impaired differentiation program. AML accounts for approximately 80% of all adult leukemias and remains the most common cause of leukemia death. Two major types of genetic events have been described that are crucial for leukemic transformation. A proposed necessary first event is disordered cell growth and upregulation of cell survival genes. The most common of these activating events were observed in the RTK Flt3, in N-Ras and K-Ras, in Kit, and sporadically in other RTKs. Alterations in myeloid transcription factors governing hematopoietic differentiation provide second necessary event for leukemogenesis. Transcription factor fusion proteins such as AML-ETO, PML-RARalpha or PLZF-RARalpha block myeloid cell differentiation by repressing target genes. In other cases, the transcription factors themselves are mutated.
Lung cancer is a leading cause of cancer death among men and women in industrialized countries. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer and represents a heterogeneous group of cancers, consisting mainly of squamous cell (SCC), adeno (AC) and large-cell carcinoma. Molecular mechanisms altered in NSCLC include activation of oncogenes, such as K-RAS, EGFR and EML4-ALK, and inactivation of tumorsuppressor genes, such as p53, p16INK4a, RAR-beta, and RASSF1. Point mutations within the K-RAS gene inactivate GTPase activity and the p21-RAS protein continuously transmits growth signals to the nucleus. Mutations or overexpression of EGFR leads to a proliferative advantage. EML4-ALK fusion leads to constitutive ALK activation, which causes cell proliferation, invasion, and inhibition of apoptosis. Inactivating mutation of p53 can lead to more rapid proliferation and reduced apoptosis. The protein encoded by the p16INK4a inhibits formation of CDK-cyclin-D complexes by competitive binding of CDK4 and CDK6. Loss of p16INK4a expression is a common feature of NSCLC. RAR-beta is a nuclear receptor that bears vitamin-A-dependent transcriptional activity. RASSF1A is able to form heterodimers with Nore-1, an RAS effector.Therefore loss of RASSF1A might shift the balance of RAS activity towards a growth-promoting effect.
Inflammatory bowel disease (IBD), which includes Crohn disease (CD) and ulcerative colitis (UC), is characterized by chronic inflammation of the gastrointestinal tract due to environmental and genetic factors, infectious microbes, and the dysregulated immune system. Although many environmental factors (for example, geographic locations, smoking, etc.) affect the development of IBD, the most crucial might be the luminal (external) environment of the epithelial cells. There are pathogens that are found in increasing frequency in IBD. The microbial components such as flagellin, peptidoglycan, and lipopolysaccharide are recognized by receptors such as toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) proteins, and also by antigen-presenting cells (APCs) in genetically susceptible host. The TLR recognition triggers the activation of NF-kappaB, leading to an inflammatory response. APC-expressed gene NOD2 has been associated with Crohn disease. In case of mutations of NOD2, negative regulation of IL-12 production is reduced with the stimulation of muramyl dipeptide (MDP), leading to CD. In addition, the APC mediates the differentiation of naive T cells into effector T cells (Th1, Th17, Th2) and natural killer T (NKT) cells. Th1 and Th17 cells produce high levels of IFN-gamma and IL-17, -22, respectively, both of which promote CD. In contrast, Th2 cells produce IL-4, -5, -10, which together with IL-13 from NKT induce UC.
Interleukin-6 (IL-6) is a pleiotropic cytokine with roles in processes including immune regulation, hematopoiesis, inflammation, oncogenesis, metabolic control and sleep. It is the founding member of a family of IL-6-related cytokines such as IL-11, IL-27 leukemia inhibitory factor (LIF), cilliary neurotrophic factor (CNTF) and oncostatin M. The IL-6 receptor (IL6R) consists of an alpha subunit that specifically binds IL-6 and a beta subunit, IL6RB or gp130, which is the signaling component of all the receptors for cytokines related to IL-6. IL6R alpha exists in transmembrane and soluble forms. The transmembrane form is mainly expressed by hepatocytes, neutrophils, monocytes/macrophages, and some lymphocytes. Soluble forms of IL6R (sIL6R) are also expressed by these cells. Two major mechanisms for the production of sIL6R have been proposed. Alternative splicing generates a transcript lacking the transmembrane domain by using splicing donor and acceptor sites that flank the transmembrane domain coding region. This also introduces a frameshift leading to the incorporation of 10 additional amino acids at the C terminus of sIL6R.A second mechanism for the generation of sIL6R is the proteolytic cleavage or 'shedding' of membrane-bound IL-6R. Two proteases ADAM10 and ADAM17 are thought to contribute to this (Briso et al. 2008). sIL6R can bind IL6 and stimulate cells that express gp130 but not IL6R alpha, a process that is termed trans-signaling. This explains why many cells, including hematopoietic progenitor cells, neuronal cells, endothelial cells, smooth muscle cells, and embryonic stem cells, do not respond to IL6 alone, but show a remarkable response to IL6/sIL6R. It is clear that the trans-signaling pathway is responsible for the pro-inflammatory activities of IL-6 whereas the membrane bound receptor governs regenerative and anti-inflammatory IL-6 activitiesIL6R signal transduction is mediated by two pathways:the JAK-STAT (Janus family tyrosine kinase-signal transducer and activator of transcription) pathway and the Ras-MAPK (mitogen-activated protein kinase) pathway. Negative regulators of IL-6 signaling include SOCS (suppressor of cytokine signals) and SHP2. Within the last few years different antibodies have been developed to inhibit IL-6 activity, and the first such antibodies have been introduced into the clinic for the treatment of inflammatory diseases (Kopf et al. 2010)
Bcl-2 interacts with tBid (Yi et al. 2003), BIM (Puthalakath et al. 1999), PUMA (Nakano and Vousden 2001), NOXA (Oda et al. 2000), BAD (Yang et al. 2005), BMF (Puthalakath et al. 2001), resulting in inactivation of BCL2. Binding of BCL2 to tBID inhibits BID-induced cytochrome C release and apoptosis (Yi et al. 2003). BH3 only proteins associate with and inactivate anti-apoptotic BCL-XL
Interleukin-7 (IL7) is produced primarily by T zone fibroblastic reticular cells found in lymphoid organs, and also expressed by non-hematopoietic stromal cells present in other tissues including the skin, intestine and liver. It is an essential survival factor for lymphocytes, playing a key anti-apoptotic role in T-cell development, as well as mediating peripheral T-cell maintenance and proliferation. This dual function is reflected in a dose-response relationship that distinguishes the survival function from the proliferative activity; low doses of IL7 (<1 ng/ml) sustain only survival, higher doses (>1 ng/ml) promote survival and cell cycling (Kittipatarin et al. 2006, Swainson et al. 2007).The IL7 receptor is a heterodimeric complex of the the common cytokine-receptor gamma chain (IL2RG, CD132, or Gc) and the IL7-receptor alpha chain (IL7R, IL7RA, CD127). Both chains are members of the type 1 cytokine family. Neither chain is unique to the IL7 receptor as IL7R is utilized by the receptor for thymic stromal lymphopoietin (TSLP) while IL2RG is shared with the receptors for IL2, IL4, IL9, IL15 and IL21. IL2RG consists of a single transmembrane region and a 240aa extracellular region that includes a fibronectin type III (FNIII) domain thought to be involved in receptor complex formation. It is expressed on most lymphocyte populations. Null mutations of IL2RG in humans cause X-linked severe combined immunodeficiency (X-SCID), which has a phenotype of severely reduced T-cell and natural killer (NK) cell populations, but normal numbers of B cells. In addition to reduced T- and NK-cell numbers, Il2rg knockout mice also have dramatically reduced B-cell populations suggesting that Il2rg is more critical for B-cell development in mice than in humans. Patients with severe combined immunodeficiency (SCID) phenotype due to IL7R mutations (see Puel & Leonard 2000), or a partial deficiency of IL7R (Roifman et al. 2000) have markedly reduced circulating T cells, but normal levels of peripheral blood B cells and NK cells, similar to the phenotype of IL2RG mutations, highlighting a requirement for IL7 in T cell lymphopoiesis. It has been suggested that IL7 is essential for murine, but not human B cell development, but recent studies indicate that IL7 is essential for human B cell production from adult bone marrow and that IL7-induced expansion of the progenitor B cell compartment is increasingly critical for human B cell production during later stages of development (Parrish et al. 2009).IL7 has been shown to induce rapid and dose-dependent tyrosine phosphorylation of JAKs 1 and 3, and concomitantly tyrosine phosphorylation and DNA-binding activity of STAT5a/b (Foxwell et al. 1995). IL7R was shown to directly induce the activation of JAKs and STATs by van der Plas et al. (1996). Jak1 and Jak3 knockout mice displayed severely impaired thymic development, further supporting their importance in IL7 signaling (Rodig et al. 1998, Nosaka et al. 1995).The role of STAT5 in IL7 signaling has been studied largely in mouse models. Tyr449 in the cytoplasmic domain of IL7RA is required for T-cell development in vivo and activation of JAK/STAT5 and PI3k/Akt pathways (Jiang et al. 2004, Pallard et al. 1999). T-cells from an IL7R Y449F knock-in mouse did not activate STAT5 (Osbourne et al. 2007), indicating that IL7 regulates STAT5 activity via this key tyrosine residue. STAT5 seems to enhance proliferation of multiple cell lineages in mouse models but it remains unclear whether STAT5 is required solely for survival signaling or also for the induction of proliferative activity (Kittipatarin & Khaled, 2007).The model for IL7 receptor signaling is believed to resemble that of other Gc family cytokines, based on detailed studies of the IL2 receptor, where IL2RB binds constitutively to JAK1 while JAK3 is pre-associated uniquely with the IL2RG chain. Extending this model to IL7 suggests a similar series of events: IL7R constitutively associated with JAK1 binds IL7, the resulting trimer recruits IL2RG:JAK3, bringing JAK1 and JAK3 into proximity. The association of both chains of the IL7 receptor orients the cytoplasmic domains of the receptor chains so that their associated kinases (Janus and phosphatidylinositol 3-kinases) can phosphorylate sequence elements on the cytoplasmic domains (Jiang et al. 2005). JAKs have low intrinsic enzymatic activity, but after mutual phosphorylation acquire much higher activity, leading to phosphorylation of the critical Y449 site on IL7R. This site binds STAT5 and possibly other signaling adapters, they in turn become phosphorylated by JAK1 and/or JAK3. Phosphorylated STATs translocate to the nucleus and trigger the transcriptional events of their target genes.The role of the PI3K/AKT pathway in IL7 signaling is controversial. It is a potential T-cell survival pathway because in many cell types PI3K signaling regulates diverse cellular functions such as cell cycle progression, transcription, and metabolism. The ERK/MAPK pathway does not appear to be involved in IL7 signaling (Crawley et al. 1996).It is not clear how IL7 influences cell proliferation. In the absence of a proliferative signal such as IL7 or IL3, dependent lymphocytes arrest in the G0/G1 phase of the cell cycle. To exit this phase, cells typically activate specific G1 Cyclin-dependent kinases/cyclins and down regulate cell cycle inhibitors such as Cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27kip1). There is indirect evidence suggesting a possible role for IL7 stimulated activation of PI3K/AKT signaling, obtained from transformed cell lines and thymocytes, but not confirmed by observations using primary T-cells (Kittipatarin & Khaled, 2007). IL7 withdrawal results in G1/S cell cycle arrest and is correlated with loss of cdk2 activity (Geiselhart et al. 2001), both events which are known to be regulated by the dephosphorylating activity of Cdc25A. Expression of a p38 MAPK-resistant Cdc25A mutant in an IL-7-dependent T-cell line as well as in peripheral, primary T-cells was sufficient to sustain cell survival and promote cell cycling for several days in the absence of IL7 (Khaled et al. 2005). Cdkn1b is a member of the CIP/KIP family of cyclin-dependent cell cycle inhibitors (CKIs) that negatively regulates the G1/S transition. In IL7 dependent T-cells, the expression of Cdkn1b was sufficient to cause G1 arrest in the presence of IL7. Withdrawal of IL7 induced the upregulation of Cdkn1b and arrested cells in G1 while siRNA knockout of Cdkn1b enhanced cell cycle progression. However, adoptive transfer of Cdkn1b-deficient lymphocytes into IL7 deficient mice indicated that loss of Cdkn1b could only partially compensate for the IL7 signal needed by T-cells to expand in a lymphopenic environment (Li et al. 2006), so though Cdkn1b may be involved in negative regulation of the cell cycle through an effect on cdk2 activity, its absence is not sufficient to fully induce cell cycling under lymphopenic conditions
Stem cell factor (SCF) is a growth factor with membrane bound and soluble forms. It is expressed by fibroblasts and endothelial cells throughout the body, promoting proliferation, migration, survival and differentiation of hematopoetic progenitors, melanocytes and germ cells.(Linnekin 1999, Ronnstrand 2004, Lennartsson and Ronnstrand 2006). The receptor for SCF is KIT, a tyrosine kinase receptor (RTK) closely related to the receptors for platelet derived growth factor receptor, colony stimulating factor 1 (Linnekin 1999) and Flt3 (Rosnet et al. 1991). Four isoforms of c-Kit have been identified in humans. Alternative splicing results in isoforms of KIT differing in the presence or absence of four residues (GNNK) in the extracellular region. This occurs due to the use of an alternate 5' splice donor site. These GNNK+ and GNNK- variants are co-expressed in most tissues; the GNNK- form predominates and was more strongly tyrosine-phosphorylated and more rapidly internalized (Ronnstrand 2004). There are also splice variants that arise from alternative usage of splice acceptor site resulting in the presence or absence of a serine residue (Crosier et al., 1993). Finally, there is an alternative shorter transcript of KIT expressed in postmeiotic germ cells in the testis which encodes a truncated KIT consisting only of the second part of the kinase domain and thus lackig the extracellular and transmembrane domains as well as the first part of the kinase domain (Rossi et al. 1991). Binding of SCF homodimers to KIT results in KIT homodimerization followed by activation of its intrinsic tyrosine kinase activity. KIT stimulation activates a wide array of signalling pathways including MAPK, PI3K and JAK/STAT (Reber et al. 2006, Ronnstrand 2004). Defects of KIT in humans are associated with different genetic diseases and also in several types of cancers like mast cell leukaemia, germ cell tumours, certain subtypes of malignant melanoma and gastrointestinal tumours
8p11 myeloproliferative syndrome (EMS) is an aggressive disorder that is associated with a translocation event at the FGFR1 gene on chromosome 8p11. Typical symptoms upon diagnosis include eosinophilia and associated T-cell lymphoblastic lymphoma; the disease rapidly advances to acute leukemia, usually of myeloid lineage. At present the only effective treatment is allogenic stem cell transplantation (reviewed in Jackson, 2010). At the molecular level, EMS appears to be caused by translocation events on chromosome 8 that create gene fusions between the intracellular domain of FGFR1 and an N-terminal partner gene that encodes a dimerization domain. The resulting fusion protein dimerizes in a ligand-independent fashion based the N-terminal domain provided by the partner protein and stimulates constititutive downstream FGFR1 signaling without altering the intrisic kinase activity of the receptor. To date, 11 partner genes have been identified: ZMYM2, FGFR1OP, FGFR1OP2, HERVK, TRIM24, CUX1, BCR, CEP110, LRRFIP1, MYO18A and CPSF6, although not all have been functionally characterized (reviewed in Jackson, 2010, Turner and Grose, 2010; Wesche, 2011). Where examined, cell lines carrying FGFR1 fusion genes have been shown to be transforming and to support IL3-independent proliferation through anti-apoptotic, prosurvival pathways(Lelievre, 2008; Ollendorff, 1999; Chase, 2007; Guasch, 2001; Wasag 2011; Roumiantsev, 2004; Demiroglu, 2001; Smedley, 1999). Signaling appears to occur predominantly through PLCgamma, PI3K and STAT signaling, with a more minor contribution from MAPK activation. Because the fusion proteins lack the FRS2-binding site, the mechanism of MAPK activation is unclear. Recruitment of GRB2:SOS1 through recruitment of SHC is one possibility (Guasch, 2001)
The role of autophosphorylation sites on PDGF receptors are to provide docking sites for downstream signal transduction molecules which contain SH2 domains. The SH2 domain is a conserved motif of around 100 amino acids that can bind a phosphorylated tyrosine residue. These downstream molecules are activated upon binding to, or phosphorylated by, the receptor kinases intrinsic to PDGF receptors.Some of the dowstream molecules are themselves enzymes, such as phosphatidylinositol 3'-kinase (PI3K), phospholipase C (PLC-gamma), the Src family of tyrosine kinases, the tyrosine phosphatase SHP2, and a GTPase activating protein (GAP) for Ras. Others such as Grb2 are adaptor molecules which link the receptor with downstream catalytic molecules
Neurotrophin-induced increase in Signal transducer and activator of transcription 3 (STAT3; acute-phase response factor) activation appears to underly several downstream functions of neurotrophin signalling, such as transcription of immediate early genes, proliferation arrest, and neurite outgrowth
The culture medium of senescent cells in enriched in secreted proteins when compared with the culture medium of quiescent i.e. presenescent cells and these secreted proteins constitute the so-called senescence-associated secretory phenotype (SASP), also known as the senescence messaging secretome (SMS). SASP components include inflammatory and immune-modulatory cytokines (e.g. IL6 and IL8), growth factors (e.g. IGFBPs), shed cell surface molecules (e.g. TNF receptors) and survival factors. While the SASP exhibits a wide ranging profile, it is not significantly affected by the type of senescence trigger (oncogenic signalling, oxidative stress or DNA damage) or the cell type (epithelial vs. mesenchymal) (Coppe et al. 2008). However, as both oxidative stress and oncogenic signaling induce DNA damage, the persistent DNA damage may be a deciding SASP initiator (Rodier et al. 2009). SASP components function in an autocrine manner, reinforcing the senescent phenotype (Kuilman et al. 2008, Acosta et al. 2008), and in the paracrine manner, where they may promote epithelial-to-mesenchymal transition (EMT) and malignancy in the nearby premalignant or malignant cells (Coppe et al. 2008). Interleukin-1-alpha (IL1A), a minor SASP component whose transcription is stimulated by the AP-1 (FOS:JUN) complex (Bailly et al. 1996), can cause paracrine senescence through IL1 and inflammasome signaling (Acosta et al. 2013).
Here, transcriptional regulatory processes that mediate the SASP are annotated. DNA damage triggers ATM-mediated activation of TP53, resulting in the increased level of CDKN1A (p21). CDKN1A-mediated inhibition of CDK2 prevents phosphorylation and inactivation of the Cdh1:APC/C complex, allowing it to ubiquitinate and target for degradation EHMT1 and EHMT2 histone methyltransferases. As EHMT1 and EHMT2 methylate and silence the promoters of IL6 and IL8 genes, degradation of these methyltransferases relieves the inhibition of IL6 and IL8 transcription (Takahashi et al. 2012). In addition, oncogenic RAS signaling activates the CEBPB (C/EBP-beta) transcription factor (Nakajima et al. 1993, Lee et al. 2010), which binds promoters of IL6 and IL8 genes and stimulates their transcription (Kuilman et al. 2008, Lee et al. 2010). CEBPB also stimulates the transcription of CDKN2B (p15-INK4B), reinforcing the cell cycle arrest (Kuilman et al. 2008). CEBPB transcription factor has three isoforms, due to three alternative translation start sites. The CEBPB-1 isoform (C/EBP-beta-1) seems to be exclusively involved in growth arrest and senescence, while the CEBPB-2 (C/EBP-beta-2) isoform may promote cellular proliferation (Atwood and Sealy 2010 and 2011). IL6 signaling stimulates the transcription of CEBPB (Niehof et al. 2001), creating a positive feedback loop (Kuilman et al. 2009, Lee et al. 2010). NF-kappa-B transcription factor is also activated in senescence (Chien et al. 2011) through IL1 signaling (Jimi et al. 1996, Hartupee et al. 2008, Orjalo et al. 2009). NF-kappa-B binds IL6 and IL8 promoters and cooperates with CEBPB transcription factor in the induction of IL6 and IL8 transcription (Matsusaka et al. 1993, Acosta et al. 2008). Besides IL6 and IL8, their receptors are also upregulated in senescence (Kuilman et al. 2008, Acosta et al. 2008) and IL6 and IL8 may be master regulators of the SASP.
IGFBP7 is also an SASP component that is upregulated in response to oncogenic RAS-RAF-MAPK signaling and oxidative stress, as its transcription is directly stimulated by the AP-1 (JUN:FOS) transcription factor. IGFBP7 negatively regulates RAS-RAF (BRAF)-MAPK signaling and is important for the establishment of senescence in melanocytes (Wajapeyee et al. 2008).
Please refer to Young and Narita 2009 for a recent review
Leptin (LEP, OB, OBS), a circulating adipokine, and its receptor LEPR (DB, OBR) control food intake and energy balance and are implicated in obesity-related diseases (recently reviewed in Amitani et al. 2013, Dunmore and Brown 2013, Cottrell and Mercer 2012, La Cava 2012, Marroqui et al. 2012, Paz-Filho et al. 2012, Denver et al. 2011, Lee 2011, Marino et al. 2011, Morton and Schwartz 2011, Scherer and Buettner 2011, Shan and Yeo 2011, Wauman and Tavernier 2011, Dardeno et al. 2010, Bjorbaek 2009, Morris and Rui 2009, Myers et al. 2008), including cancer (Guo et al. 2012), inflammation (Newman and Gonzalez-Perez 2013, Iikuni et al. 2008), and angiogenesis (Gonzalez-Perez et al. 2013).The identification of spontaneous mutations in the leptin gene (ob or LEP) and the leptin receptor gene (Ob-R, db or LEPR) genes in mice opened up a new field in obesity research. Leptin was discovered as the product of the gene affected by the ob (obesity) mutation, which causes obesity in mice. Likewise LEPR is the product of the gene affected by the db (diabetic) mutation. Leptin binding to LEPR induces canonical (JAK2/STATs; MAPK/ERK 1/2, PI-3K/AKT) and non-canonical signaling pathways (PKC, JNK, p38 MAPK and AMPK) in diverse cell types. The binding of leptin to the long isoform of LEPR (OB-Rl) initiates a phosphorylation cascade that results in transcriptional activation of target genes by STAT5 and STAT3 and activation of the PI3K pathway(not shown here), the MAPK/ERK pathway, and the mTOR/S6K pathway. Shorter LEPR isoforms with truncated intracellular domains are unable to activate the STAT pathway, but can transduce signals by way of activation of JAK2, IRS-1 or ERKs, including MAPKs.LEPR is constitutively bound to the JAK2 kinase. Binding of LEP to LEPR causes a conformational change in LEPR that activates JAK2 autophosphorylation followed by phosphorylation of LEPR by JAK2. Phosphorylated LEPR binds STAT3, STAT5, and SHP2 which are then phosphorylated by JAK2. Phosphorylated JAK2 binds SH2B1 which then binds IRS1/2, resulting in phosphorylation of IRS1/2 by JAK2. Phosphorylated STAT3 and STAT5 dimerize and translocate to the nucleus where they activate transcription of target genes (Jovanovic et al. 2010). SHP2 activates the MAPK pathway. IRS1/2 activate the PI3K/AKT pathway which may be the activator of mTOR/S6K.Several isoforms of LEPR have been identified (reviewed in Gorska et al. 2010). The long isoform (LEPRb, OBRb) is expressed in the hypothalamus and all types of immune cells. It is the only isoform known to fully activate signaling pathways in response to leptin. Shorter isoforms (LEPRa, LEPRc, LEPRd, and a soluble isoform LEPRe) are able to interact with JAK kinases and activate other pathways, however their roles in energy homeostasis are not fully characterized
POU5F1 (OCT4), SOX2, and NANOG bind elements in the promoters of target genes. The target genes of each transcription factor overlap extensively: POU5F1, SOX2, and NANOG co-occupy at least 353 genes (Boyer et al. 2005). About half of POU5F1 targets also bind SOX2 and about 90% of these also bind NANOG (Boyer et al. 2005). Upon binding the transcription factors activate expression of one subset of target genes and repress another subset (Kim et al. 2006, Matoba et al. 2006, Player et al. 2006, Babaie et al. 2007). The targets listed in this module are those that have been described as composing activated genes in the core transcriptional network of pluripotent stem cells (Assou et al. 2007, Chavez et al. 2009, Jung et al. 2010). Inferences from mouse to human have been made with caution because of significant differences between the two species (Ginis et al. 2004)
TRiC has broad recognition specificities, but in the cell it interacts with only a defined set of substrates (Yam et al. 2008). Many of its substrates that are targeted during biosynthesis are conserved between mammals and yeast (Yam et al. 2008)
Pluripotent stem cells are undifferentiated cells posessing an abbreviated cell cycle (reviewed in Stein et al. 2012), a characteristic profile of gene expression (Rao et al. 2004, Kim et al. 2006, Player et al. 2006, Wang et al 2006 using mouse, International Stem Cell Initiative 2007, Assou et al. 2007, Assou et al. 2009, Ding et al. 2012 using mouse), and the ability to self-renew and generate all cell types of the body except extraembryonic lineages (Marti et al. 2013, reviewed in Romeo et al. 2012). They are a major cell type in the inner cell mass of the early embryo in vivo, and cells with the same properties, induced pluripotent stem cells, can be generated in vitro from differentiated adult cells by overexpression of a set of transcription factor genes (Takahashi and Yamanaka 2006, Takahashi et al. 2007, Yu et al. 2007, Jaenisch and Young 2008, Stein et al. 2012, reviewed in Dejosez and Zwaka 2012).Pluripotency is maintained by a self-reinforcing loop of transcription factors (Boyer et al. 2005, Rao et al. 2006, Matoba et al. 2006, Player et al. 2006, Babaie et al. 2007, Sun et al. 2008, Assou et al. 2009, reviewed in Kashyap et al. 2009, reviewed in Dejosez and Zwaka 2012). In vivo, initiation of pluripotency may depend on maternal factors transmitted through the oocyte (Assou et al. 2009) and on DNA demethylation in the zygote (recently reviewed in Seisenberger et al. 2013) and hypoxia experienced by the blastocyst in the reproductive tract before implantation (Forristal et al. 2010, reviewed in Mohyeldin et al. 2010). In vitro, induced pluripotency may initiate with demethylation and activation of the promoters of POU5F1 (OCT4) and NANOG (Bhutani et al. 2010). Hypoxia also significantly enhances conversion to pluripotent stem cells (Yoshida et al. 2009). POU5F1 and NANOG, together with SOX2, encode central factors in pluripotency and activate their own transcription (Boyer et al 2005, Babaie et al. 2007, Yu et al. 2007, Takahashi et al. 2007). The autoactivation loop maintains expression of POU5F1, NANOG, and SOX2 at high levels in stem cells and, in turn, complexes containing various combinations of these factors (Remenyi et al. 2003, Lam et al. 2012) activate the expression of a group of genes whose products are associated with rapid cell proliferation and repress the expression of a group of genes whose products are associated with cell differentiation (Boyer et al. 2005, Matoba et al. 2006, Babaie et al. 2007, Chavez et al. 2009, Forristal et al. 2010, Guenther 2011).Comparisons between human and mouse embryonic stem cells must be made with caution and for this reason inferences from mouse have been used sparingly in this module. Human ESCs more closely resemble mouse epiblast stem cells in having inactivated X chromosomes, flattened morphology, and intolerance to passaging as single cells (Hanna et al. 2010). Molecularly, human ESCs differ from mouse ESCs in being maintained by FGF and Activin/Nodal/TGFbeta signaling rather than by LIF and canonical Wnt signaling (Greber et al. 2010, reviewed in Katoh 2011). In human ESCs POU5F1 binds and directly activates the FGF2 gene, however Pou5f1 does not activate Fgf2 in mouse ESCs (reviewed in De Los Angeles et al. 2012). Differences in expression patterns of KLF2, KLF4, KLF5, ESRRB, FOXD3, SOCS3, LIN28, NODAL were observed between human and mouse ESCs (Cai et al. 2010) as were differences in expression of EOMES, ARNT and several other genes (Ginis et al.2004)
Interleukin-10 (IL10) was originally described as a factor named cytokine synthesis inhibitory factor that inhibited T-helper (Th) 1 activation and Th1 cytokine production (Fiorentino et al. 1989). It was found to be expressed by a variety of cell types including macrophages, dendritic cell subsets, B cells, several T-cell subpopulations including Th2 and T-regulatory cells (Tregs) and Natural Killer (NK) cells (Moore et al. 2001). It is now recognized that the biological effects of IL10 are directed at antigen-presenting cells (APCs) such as macrophages and dendritic cells (DCs), its effects on T-cell development and differentiation are largely indirect via inhibition of macrophage/dendritic cell activation and maturation (Pestka et al. 2004, Mocellin et al. 2004). T cells are thought to be the main source of IL10 (Hedrich & Bream 2010). IL10 inhibits a broad spectrum of activated macrophage/monocyte functions including monokine synthesis, NO production, and expression of class II MHC and costimulatory molecules such as IL12 and CD80/CD86 (de Waal Malefyt et al. 1991, Gazzinelli et al. 1992). Studies with recombinant cytokine and neutralizing antibodies revealed pleiotropic activities of IL10 on B, T, and mast cells (de Waal Malefyt et al. 1993, Rousset et al. 1992, Thompson-Snipes et al. 1991) and provided evidence for the in vivo significance of IL10 activities (Ishida et al. 1992, 1993). IL10 antagonizes the expression of MHC class II and the co-stimulatory molecules CD80/CD86 as well as the pro-inflammatory cytokines IL1Beta, IL6, IL8, TNFalpha and especially IL12 (Fiorentino et al. 1991, D'Andrea et al. 1993). The biological role of IL10 is not limited to inactivation of APCs, it also enhances B cell, granulocyte, mast cell, and keratinocyte growth/differentiation, as well as NK-cell and CD8+ cytotoxic T-cell activation (Moore et al. 2001, Hedrich & Bream 2010). IL10 also enhances NK-cell proliferation and/or production of IFN-gamma (Cai et al. 1999). IL10-deficient mice exhibited inflammatory bowel disease (IBD) and other exaggerated inflammatory responses (Kuhn et al. 1993, Berg et al. 1995) indicating a critical role for IL10 in limiting inflammatory responses. Dysregulation of IL10 is linked with susceptibility to numerous infectious and autoimmune diseases in humans and mouse models (Hedrich & Bream 2010). IL10 signaling is initiated by binding of homodimeric IL10 to the extracellular domains of two adjoining IL10RA molecules. This tetramer then binds two IL10RB chains. IL10RB cannot bind to IL10 unless bound to IL10RA (Ding et al. 2001, Yoon et al. 2006); binding of IL10 to IL10RA without the co-presence of IL10RB fails to initiate signal transduction (Kotenko et al. 1997).IL10 binding activates the receptor-associated Janus tyrosine kinases, JAK1 and TYK2, which are constitutively bound to IL10R1 and IL10R2 respectively. In the classic model of receptor activation assembly of the receptor complex is believed to enable JAK1/TYK2 to phosphorylate and activate each other. Alternatively the binding of IL10 may cause conformational changes that allow the pseudokinase inhibitory domain of one JAK kinase to move away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate (Waters & Brooks 2015).The activated JAK kinases phosphorylate the intracellular domains of the IL10R1 chains on specific tyrosine residues. These phosphorylated tyrosine residues and their flanking peptide sequences serve as temporary docking sites for the latent, cytosolic, transcription factor, STAT3. STAT3 transiently docks on the IL10R1 chain via its SH2 domain, and is in turn tyrosine phosphorylated by the receptor-associated JAKs. Once activated, it dissociates from the receptor, dimerizes with other STAT3 molecules, and translocates to the nucleus where it binds with high affinity to STAT-binding elements (SBEs) in the promoters of IL-10-inducible genes (Donnelly et al. 1999)
Interleukin-4 (IL4) is a principal regulatory cytokine during the immune response, crucially important in allergy and asthma (Nelms et al. 1999). When resting T cells are antigen-activated and expand in response to Interleukin-2 (IL2), they can differentiate as Type 1 (Th1) or Type 2 (Th2) T helper cells. The outcome is influenced by IL4. Th2 cells secrete IL4, which both stimulates Th2 in an autocrine fashion and acts as a potent B cell growth factor to promote humoral immunity (Nelms et al. 1999). Interleukin-13 (IL13) is an immunoregulatory cytokine secreted predominantly by activated Th2 cells. It is a key mediator in the pathogenesis of allergic inflammation. IL13 shares many functional properties with IL4, stemming from the fact that they share a common receptor subunit. IL13 receptors are expressed on human B cells, basophils, eosinophils, mast cells, endothelial cells, fibroblasts, monocytes, macrophages, respiratory epithelial cells, and smooth muscle cells, but unlike IL4, not T cells. Thus IL13 does not appear to be important in the initial differentiation of CD4 T cells into Th2 cells, rather it is important in the effector phase of allergic inflammation (Hershey et al. 2003).\n\nIL4 and IL13 induce “alternative activation” of macrophages, inducing an anti-inflammatory phenotype by signaling through IL4R alpha in a STAT6 dependent manner. This signaling plays an important role in the Th2 response, mediating anti-parasitic effects and aiding wound healing (Gordon & Martinez 2010, Loke et al. 2002)\n\nThere are two types of IL4 receptor complex (Andrews et al. 2006). Type I IL4R (IL4R1) is predominantly expressed on the surface of hematopoietic cells and consists of IL4R and IL2RG, the common gamma chain. Type II IL4R (IL4R2) is predominantly expressed on the surface of nonhematopoietic cells, it consists of IL4R and IL13RA1 and is also the type II receptor for IL13. (Obiri et al. 1995, Aman et al. 1996, Hilton et al. 1996, Miloux et al. 1997, Zhang et al. 1997). The second receptor for IL13 consists of IL4R and Interleukin-13 receptor alpha 2 (IL13RA2), sometimes called Interleukin-13 binding protein (IL13BP). It has a high affinity receptor for IL13 (Kd = 250 pmol/L) but is not sufficient to render cells responsive to IL13, even in the presence of IL4R (Donaldson et al. 1998). It is reported to exist in soluble form (Zhang et al. 1997) and when overexpressed reduces JAK-STAT signaling (Kawakami et al. 2001). It's function may be to prevent IL13 signalling via the functional IL4R:IL13RA1 receptor. IL13RA2 is overexpressed and enhances cell invasion in some human cancers (Joshi & Puri 2012).The first step in the formation of IL4R1 (IL4:IL4R:IL2RB) is the binding of IL4 with IL4R (Hoffman et al. 1995, Shen et al. 1996, Hage et al. 1999). This is also the first step in formation of IL4R2 (IL4:IL4R:IL13RA1). After the initial binding of IL4 and IL4R, IL2RB binds (LaPorte et al. 2008), to form IL4R1. Alternatively, IL13RA1 binds, forming IL4R2. In contrast, the type II IL13 complex (IL13R2) forms with IL13 first binding to IL13RA1 followed by recruitment of IL4R (Wang et al. 2009).Crystal structures of the IL4:IL4R:IL2RG, IL4:IL4R:IL13RA1 and IL13:IL4R:IL13RA1 complexes have been determined (LaPorte et al. 2008). Consistent with these structures, in monocytes IL4R is tyrosine phosphorylated in response to both IL4 and IL13 (Roy et al. 2002, Gordon & Martinez 2010) while IL13RA1 phosphorylation is induced only by IL13 (Roy et al. 2002, LaPorte et al. 2008) and IL2RG phosphorylation is induced only by IL4 (Roy et al. 2002).Both IL4 receptor complexes signal through Jak/STAT cascades. IL4R is constitutively-associated with JAK2 (Roy et al. 2002) and associates with JAK1 following binding of IL4 (Yin et al. 1994) or IL13 (Roy et al. 2002). IL2RG constitutively associates with JAK3 (Boussiotis et al. 1994, Russell et al. 1994). IL13RA1 constitutively associates with TYK2 (Umeshita-Suyama et al. 2000, Roy et al. 2002, LaPorte et al. 2008, Bhattacharjee et al. 2013). IL4 binding to IL4R1 leads to phosphorylation of JAK1 (but not JAK2) and STAT6 activation (Takeda et al. 1994, Ratthe et al. 2007, Bhattacharjee et al. 2013). IL13 binding increases activating tyrosine-99 phosphorylation of IL13RA1 but not that of IL2RG. IL4 binding to IL2RG leads to its tyrosine phosphorylation (Roy et al. 2002). IL13 binding to IL4R2 leads to TYK2 and JAK2 (but not JAK1) phosphorylation (Roy & Cathcart 1998, Roy et al. 2002).Phosphorylated TYK2 binds and phosphorylates STAT6 and possibly STAT1 (Bhattacharjee et al. 2013). A second mechanism of signal transduction activated by IL4 and IL13 leads to the insulin receptor substrate (IRS) family (Kelly-Welch et al. 2003). IL4R1 associates with insulin receptor substrate 2 and activates the PI3K/Akt and Ras/MEK/Erk pathways involved in cell proliferation, survival and translational control. IL4R2 does not associate with insulin receptor substrate 2 and consequently the PI3K/Akt and Ras/MEK/Erk pathways are not activated (Busch-Dienstfertig & González-Rodríguez 2013)
PTK6-mediated phosphorylation activates STAT3 transcription factor via STAP2 adapter protein. STAT3 transcriptional target SOCS3 is a negative regulator of PTK6 and inhibits PTK6-mediated phosphorylation of STAT3, thus creating a negative feedback loop (Liu et al. 2006, Ikeda et al. 2009, Ikeda et al. 2010). PTK6 may also activate STAT5-mediated transcription (Ikeda et al. 2011)
The interleukin 20 (IL20) subfamily comprises IL19, IL20, IL22, IL24 and IL26. They are members of the larger IL10 family, but have been grouped together based on their usage of common receptor subunits and similarities in their target cell profiles and biological functions. Members of the IL20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. Much of the understanding of this group of cytokines is based on IL22, which is the most studied member (Rutz et al. 2014, Akdis M et al. 2016, Longsdon et al. 2012)
The STAT3 transcription factor binds to activated MET through phosphorylated tyrosine residue Y1356 of MET. STAT3 may also bind to activated MET indirectly through GAB1, but this interaction has not been studied in detail. Activated MET induces phosphorylation of STAT3 at Y705, triggering STAT3 dimerization and nuclear translocation (Schaper et al. 1997, Boccaccio et al. 1998, Zhang et al. 2002, Cramer et al. 2005). Endocytosis of MET and interaction with STAT3 at endosomes may be required for sustained STAT3 phosphorylation in response to HGF stimulation (Kermorgant and Parker 2008). Activated SRC may also contribute to phosphorylation of STAT3 at Y705. STAT3 may promote HGF transcription in a SRC-dependent way, but this autocrine HGF loop may be limited to breast cancer cells (Wojcik et al. 2006, Sam et al. 2007). MET-mediated activation of STAT3 is implicated in anchorage independent cell growth and invasiveness downstream of HGF (Zhang et al. 2002, Cramer et al. 2005). MET can also interact with STAT1A, STAT1B and STAT5, but the biological importance of these interactions is not known (Runge et al. 1999)
The high affinity Interleukin-15 receptor is a heterotrimer of Interleukin-15 receptor subunit alpha (IL15RA), Interleukin-2 receptor subunit beta (IL2RB, CD122) and Cytokine receptor common subunit gamma (IL2RG, CD132). IL2RB and IL2RG are also components of the Interleukin-2 (IL2) receptor. Treatment of human T cells with Interleukin-15 (IL15) results in tyrosine phosphorylation of Tyrosine-protein kinase JAK1 (JAK1, Janus kinase 1) and Tyrosine-protein kinase JAK3 (JAK3, Janus kinase 3) (Johnston et al. 1995, Winthrop 2017). IL15 can signal by a process termed 'trans presentation', where IL15 bound by IL15 on one cell is trans-presented to IL2RB:IL2RG on another cell (Dubois et al. 2002) but can also participate in more 'traditional' cis signaling (Wu et al. 2008, Mishra et al. 2014) where all the three receptors are present on the same cell. \nStimulation of lymphocytes by IL15 release MAPK activation through GAB2/SHP2/SHC (GRB2-associated-binding protein 2/Tyrosine-protein phosphatase non-receptor type 11/SHC transforming protein 1 or 2) cascade activation (Gadina et al. 2000)
Interleukin 35 (IL35) is an IL12 family cytokine produced by regulatory but not effector T-cells. It is a dimeric protein composed of IL-12RB2 and IL27RA chains. IL35 suppresses inflammatory responses of immune cells
Interleukin 9 (IL9) binds interleukin 9 receptor a chain (IL9R) and the interleukin 2 receptor common gamma chain (IL2RG) to initiate IL9 signaling downstream cascade. IL9R colocalize with Interleukin 2 receptor α chain and MHC molecules in lipid rafts of human T lymphoma cells (Nizsalóczki et al. 2014). IL2RG is essential for IL9 dependent growth signal transduction (Kimura et al. 1995). IL9R (glycoprotein of 64 kDa) has saturable and specific binding sites with a Kd of 100 pM (Renauld et al. 1992). The activated IL9R complex recruits tyrosine kinase proteins from the Janus kinase (JAK) family: JAK1 (JAK1) and JAK3 (JAK3) for subsequent activation of the Signal transducer and activator of transcription (STAT) factors STAT1, STAT3 and STAT5. The activated STATs form STAT5 dimers and STAT1:STAT3 heterodimers (Neurath & Finotto 2016, Li & Rostami 2010)
Interleukins (IL) are immunomodulatory proteins that elicit a wide array of responses in cells and tissues. Interleukin 37 (IL37), also known as IL 1F7, is a member of the IL 1 family (Sharma et al. 2008). Isoform b of IL37 (referred just as IL37) is synthesized as a precursor that requires processing (primarily by caspase 1) to attain full receptor agonist or antagonist function (Kumar et al. 2002). Both full length and processed IL37 can bind to the IL 18 binding protein (IL 18BP) and the Interleukin 18 receptor 1 (IL 18R1) (Shi et al. 2003). Upon binding to the IL18R1, IL37 recruits Single Ig IL 1 related receptor (SIGIRR) (Nold-Petry et al. 2015). The IL37:IL18R1 complex can activate phosphorylation of Signal transducer and activator of transcription 3 (STAT3), Tyrosine protein kinase Mer and Phosphatidylinositol 3,4,5 trisphosphate 3 phosphatase and dual specificity protein phosphatase PTEN and can also inhibit Nuclear factor NF kappa B p105 subunit (NFKB) (Nold-Petry et al. 2015). Processed IL37 can be secreted from the cytosol to the extracellular space or translocated into the nucleus (Bulau et al. 2014). Full length IL37 can also be secreted from the cytosol to the extracellular space (Bulau et al. 2014). Processed IL37 can bind with Mothers against decapentaplegic homolog 3 (SMAD3) in the cytosol and then translocate to the nucleus, where it facilitates transcription of Tyrosine protein phosphatase non receptors (PTPNs) (Nold et al. 2010, Luo et al. 2017). These events ultimately lead to suppression of cytokine production in several types of immune cells resulting in reduced inflammation
Interleukin-23 (IL23) is a heterodimer of Interleukin-12 subunit beta (IL12B, IL-12p40), which is shared with IL12, and Interleukin-23 subunit alpha IL23A (IL-23p19) subunit. The functional receptor for IL23 consists of Interleukin-12 receptor subunit beta-1 (IL12RB1), which is shared with the IL12 receptor, and Interleukin-23 receptor (IL23R). IL23R is mainly expresed on activated memory T cells, Natural Killer cells, monocytes/macrophage and at low levels on dendritic cells (DCs). IL23 is mainly secreted by activated macrophages and DCs in peripheral tissues such as skin, intestinal mucosa and lung. \n\nIL23 is proinlflammatory and implicated in several autoimmune inflammatory disorders such as colitis, gastritis, psoriasis and arthritis. It is similar to IL-12 both in structure and its ability to memory T cells to increase interferon-γ (IFN-γ) production and proliferation, the ability of IL-23 to induce IL-17.\n\nIL23 activates the Janus kinases JAK2 and TYK2, resulting in phosphorylation of the receptor complex, which forms the docking sites for Signal transducer and activator of transcription 3 (STAT3) and STAT4 to bind and become phosphorylated
Interleukin-27 (IL27) is a heterodimeric cytokine that contains Epstein-Barr virus–induced gene 3 (EBI3) and IL27p28 (IL27). It signals through a receptor composed of Interleukin-6 receptor subunit beta (IL6ST, gp130), which is utilized by many cytokines, and Interleukin-27 receptor subunit alpha (IL27RA, WSX-1, TCCR) (Yoshida & Hunter 2015)
Interleukin-21 (IL21) is a pleiotropic cytokine with four alpha-helical bundles. It is produced primarily by natural killer T cells, T follicular helper cells and TH17 cells, with lower levels of production by numerous other populations of lymphohaematopoietic cells (Spolski & Leonard 2014). IL21 binds Interleukin-21 receptor (IL21R, NILR) and Cytokine receptor common subunit gamma (IL2RG, GammaC).IL21R has significant homology with the class I cytokine receptors Interleukin-2 receptor subunit beta (IL2RB) and Interleukin-4 receptor subunit alpha (IL4R) and was predicted to similarly form a complex with IL2RG. IL21R dimers can weakly bind and signal in response to IL21 but IL21 generates a much stronger response when IL21R is combined with IL2RG, which is required for a fully signaling capable IL21 receptor complex (Ozaki et al. 2000, Asao et al. 2001, Habib et al. 2002). IL21R can bind Janus kinase 1 (JAK1) (Ozaki et al. 2000) but IL2RG is required for IL21 induced signaling (Asao et al. 2001). The heteromeric IL21 receptor complex can activate JAK1, JAK3, Signal transducer and activator of transcription 1 (STAT1), STAT3, STAT4 and STAT5, depending on the cell type. In cultured T-cells IL21 induced phosphorylation of JAK1, JAK3, STAT1, STAT3 and weakly STAT5 (Asao et al. 2001). In primary CD4+ T cells IL21 induced the phosphorylation of STAT1 and STAT3 but not STAT5, whereas IL2 induced the phosphorylation of STAT5 and STAT1 but not STA3 (Bennet et al. 2003). IL21 stimulation of primary splenic B cells and the pro-B-cell line Ba-F3 induced the activation of JAK1, JAK3 and STAT5 (Habib et al. 2002). In primary human NK cells or the NK cell line NK-92, IL21 induced the activation of STAT1, STAT3, and STAT4 but not STAT5 (Strengell et al. 2002, 2003). IL21 activated STAT1 and STAT3 in human monocyte-derived macrophages (Vallières & Girard 2017)
Growth hormone (Somatotropin or GH) is a key factor in determining lean body mass, stimulating the growth and metabolism of muscle, bone and cartilage cells, while reducing body fat. It has many other roles; it acts to regulate cell growth, differentiation, apoptosis, and reorganisation of the cytoskeleton, affecting diverse processes such as cardiac function, immune function, brain function, and aging. GH also has insulin-like effects such as stimulating amino acid transport, protein synthesis, glucose transport, and lipogenesis. The growth hormone receptor (GHR) is a a member of the cytokine receptor family. When the dimeric receptor binds GH it undergoes a conformational change which leads to phosphorylation of key tyrosine residues in its cytoplasmic domains and activation of associated tyrosine kinase JAK2. This leads to recruitment of signaling molecules such as STAT5 and Src family kinases such as Lyn leading to ERK activation. The signal is attenuated by association of Suppressor of Cytokine Signaling (SOCS) proteins and SHP phosphatases which bind to or dephosphorylate specific phosphorylated tyrosines on GHR/JAK. The availability of GHR on the cell surface is regulated by at least two processes; internalization and cleavage from the suface by metalloproteases