241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm Nucleus Note=Cytoplasmic and nuclear in theabsence of TGF-beta On TGF-beta stimulation, migrates to thenucleus when complexed with SMAD4 (PubMed:15799969) Through theaction of the phosphatase PPM1A, released from the SMAD2/SMAD4complex, and exported out of the nucleus by interaction withRANBP1 (PubMed:16751101, PubMed:19289081) Co-localizes with LEMD3at the nucleus inner membrane (PubMed:15601644) MAPK-mediatedphosphorylation appears to have no effect on nuclear import(PubMed:19218245) PDPK1 prevents its nuclear translocation inresponse to TGF-beta (PubMed:17327236)
Function (UniProt annotation)
Receptor-regulated SMAD (R-SMAD) that is anintracellular signal transducer and transcriptional modulatoractivated by TGF-beta (transforming growth factor) and activintype 1 receptor kinases Binds the TRE element in the promoterregion of many genes that are regulated by TGF-beta and, onformation of the SMAD3/SMAD4 complex, activates transcriptionAlso can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD siteto regulate TGF-beta-mediated transcription Has an inhibitoryeffect on wound healing probably by modulating both growth andmigration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes This effect on wound healingappears to be hormone-sensitive Regulator of chondrogenesis andosteogenesis and inhibits early healing of bone fracturesPositively regulates PDPK1 kinase activity by stimulating itsdissociation from the 14-3-3 protein YWHAQ which acts as anegative regulator
The forkhead box O (FOXO) family of transcription factors regulates the expression of genes in cellular physiological events including apoptosis, cell-cycle control, glucose metabolism, oxidative stress resistance, and longevity. A central regulatory mechanism of FOXO proteins is phosphorylation by the serine-threonine kinase Akt/protein kinase B (Akt/PKB), downstream of phosphatidylinositol 3-kinase (PI3K), in response to insulin or several growth factors. Phosphorylation at three conserved residues results in the export of FOXO proteins from the nucleus to the cytoplasm, thereby decreasing expression of FOXO target genes. In contrast, the stress-activated c-Jun N-terminal kinase (JNK) and the energy sensing AMP-activated protein kinase (AMPK), upon oxidative and nutrient stress stimuli phosphorylate and activate FoxOs. Aside from PKB, JNK and AMPK, FOXOs are regulated by multiple players through several post-translational modifications, including phosphorylation, but also acetylation, methylation and ubiquitylation.
Mitotic cell cycle progression is accomplished through a reproducible sequence of events, DNA replication (S phase) and mitosis (M phase) separated temporally by gaps known as G1 and G2 phases. Cyclin-dependent kinases (CDKs) are key regulatory enzymes, each consisting of a catalytic CDK subunit and an activating cyclin subunit. CDKs regulate the cell's progression through the phases of the cell cycle by modulating the activity of key substrates. Downstream targets of CDKs include transcription factor E2F and its regulator Rb. Precise activation and inactivation of CDKs at specific points in the cell cycle are required for orderly cell division. Cyclin-CDK inhibitors (CKIs), such as p16Ink4a, p15Ink4b, p27Kip1, and p21Cip1, are involved in the negative regulation of CDK activities, thus providing a pathway through which the cell cycle is negatively regulated.Eukaryotic cells respond to DNA damage by activating signaling pathways that promote cell cycle arrest and DNA repair. In response to DNA damage, the checkpoint kinase ATM phosphorylates and activates Chk2, which in turn directly phosphorylates and activates p53 tumor suppressor protein. p53 and its transcriptional targets play an important role in both G1 and G2 checkpoints. ATR-Chk1-mediated protein degradation of Cdc25A protein phosphatase is also a mechanism conferring intra-S-phase checkpoint activation.
Endocytosis is a mechanism for cells to remove ligands, nutrients, and plasma membrane (PM) proteins, and lipids from the cell surface, bringing them into the cell interior. Transmembrane proteins entering through clathrin-dependent endocytosis (CDE) have sequences in their cytoplasmic domains that bind to the APs (adaptor-related protein complexes) and enable their rapid removal from the PM. In addition to APs and clathrin, there are numerous accessory proteins including dynamin. Depending on the various proteins that enter the endosome membrane, these cargoes are sorted to distinct destinations. Some cargoes, such as nutrient receptors, are recycled back to the PM. Ubiquitylated membrane proteins, such as activated growth-factor receptors, are sorted into intraluminal vesicles and eventually end up in the lysosome lumen via multivesicular endosomes (MVEs). There are distinct mechanisms of clathrin-independent endocytosis (CIE) depending upon the cargo and the cell type.
Cellular senescence is a state of irreversible cellular arrest and can be triggered by a number of factors, such as telomere shortening, oncogene activation, irradiation, DNA damage and oxidative stress. It is characterized by enlarged flattened morphology, senescence-associated beta-galactosidase (SA-b-gal) activity, secretion of inflammatory cytokines, growth factors and matrix metalloproteinases, as part of the senescence-associated secretory phenotype (SASP). Cellular senescence is functionally associated with many biological processes including aging, tumor suppression, placental biology, embryonic development, and wound healing.
Wnt proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. There are at least three different Wnt pathways: the canonical pathway, the planar cell polarity (PCP) pathway and the Wnt/Ca2+ pathway. In the canonical Wnt pathway, the major effect of Wnt ligand binding to its receptor is the stabilization of cytoplasmic beta-catenin through inhibition of the bea-catenin degradation complex. Beta-catenin is then free to enter the nucleus and activate Wnt-regulated genes through its interaction with TCF (T-cell factor) family transcription factors and concomitant recruitment of coactivators. Planar cell polarity (PCP) signaling leads to the activation of the small GTPases RHOA (RAS homologue gene-family member A) and RAC1, which activate the stress kinase JNK (Jun N-terminal kinase) and ROCK (RHO-associated coiled-coil-containing protein kinase 1) and leads to remodelling of the cytoskeleton and changes in cell adhesion and motility. WNT-Ca2+ signalling is mediated through G proteins and phospholipases and leads to transient increases in cytoplasmic free calcium that subsequently activate the kinase PKC (protein kinase C) and CAMKII (calcium calmodulin mediated kinase II) and the phosphatase calcineurin.
The transforming growth factor-beta (TGF-beta) family members, which include TGF-betas, activins and bone morphogenetic proteins (BMPs), are structurally related secreted cytokines found in species ranging from worms and insects to mammals. A wide spectrum of cellular functions such as proliferation, apoptosis, differentiation and migration are regulated by TGF-beta family members. TGF-beta family member binds to the Type II receptor and recruits Type I, whereby Type II receptor phosphorylates and activates Type I. The Type I receptor, in turn, phosphorylates receptor-activated Smads ( R-Smads: Smad1, Smad2, Smad3, Smad5, and Smad8). Once phosphorylated, R-Smads associate with the co-mediator Smad, Smad4, and the heteromeric complex then translocates into the nucleus. In the nucleus, Smad complexes activate specific genes through cooperative interactions with other DNA-binding and coactivator (or co-repressor) proteins.
Apelin is an endogenous peptide capable of binding the apelin receptor (APJ), which was originally described as an orphan G-protein-coupled receptor. Apelin and APJ are widely expressed in various tissues and organ systems. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, cell proliferation and energy metabolism regulation. On the other hand, this ligand receptor couple is also involved in several pathologies including diabetes, obesity, cardiovascular disease and cancer.
Hippo signaling is an evolutionarily conserved signaling pathway that controls organ size from flies to humans. In humans and mice, the pathway consists of the MST1 and MST2 kinases, their cofactor Salvador and LATS1 and LATS2. In response to high cell densities, activated LATS1/2 phosphorylates the transcriptional coactivators YAP and TAZ, promoting its cytoplasmic localization, leading to cell apoptosis and restricting organ size overgrowth. When the Hippo pathway is inactivated at low cell density, YAP/TAZ translocates into the nucleus to bind to the transcription enhancer factor (TEAD/TEF) family of transcriptional factors to promote cell growth and proliferation. YAP/TAZ also interacts with other transcriptional factors or signaling molecules, by which Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-beta and Wnt growth factors.
Cell-cell adherens junctions (AJs), the most common type of intercellular adhesions, are important for maintaining tissue architecture and cell polarity and can limit cell movement and proliferation. At AJs, E-cadherin serves as an essential cell adhesion molecules (CAMs). The cytoplasmic tail binds beta-catenin, which in turn binds alpha-catenin. Alpha-catenin is associated with F-actin bundles directly and indirectly. The integrity of the cadherin-catenin complex is negatively regulated by phosphorylation of beta-catenin by receptor tyrosine kinases (RTKs) and cytoplasmic tyrosine kinases (Fer, Fyn, Yes, and Src), which leads to dissociation of the cadherin-catenin complex. Integrity of this complex is positively regulated by beta -catenin phosphorylation by casein kinase II, and dephosphorylation by protein tyrosine phosphatases. Changes in the phosphorylation state of beta-catenin affect cell-cell adhesion, cell migration and the level of signaling beta-catenin. Wnt signaling acts as a positive regulator of beta-catenin by inhibiting beta-catenin degradation, which stabilizes beta-catenin, and causes its accumulation. Cadherin may acts as a negative regulator of signaling beta-catenin as it binds beta-catenin at the cell surface and thereby sequesters it from the nucleus. Nectins also function as CAMs at AJs, but are more highly concentrated at AJs than E-cadherin. Nectins transduce signals through Cdc42 and Rac, which reorganize the actin cytoskeleton, regulate the formation of AJs, and strengthen cell-cell adhesion.
Pluripotent stem cells (PSCs) are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. The types of PSCs known to date include embryonic stem (ES) and induced pluripotent stem (iPS) cells. ES cells are derived from the inner cell mass (ICM) of blastocyst-stage embryos. iPS cells are generated by reprogramming somatic cells back to pluripotent state with defined reprogramming factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors). PSCs including ES cells and iPS cells are categorized into two groups by their morphology, gene expression profile and external signal dependence. Conventional mouse-type ES/iPS cells are called 'naive state' cells. They are mainly maintained under the control of LIF and BMP signaling. On the other hand, human-type ES/iPS cells, which are in need of Activin and FGF signaling, are termed 'primed state'. However, these signaling pathways converge towards the activation of a core transcriptional network that is similar in both groups and involves OCt4, Nanog and Sox2. The three transcription factors and their downstream target genes coordinately promote self-renewal and pluripotency.
Interleukin (IL)-17-producing helper T (Th17) cells serve as a subset of CD4+ T cells involved in epithelial cell- and neutrophil mediated immune responses against extracellular microbes and in the pathogenesis of autoimmune diseases. In vivo, Th17 differentiation requires antigen presentation and co-stimulation, and activation of antigen presenting-cells (APCs) to produce TGF-beta, IL-6, IL-1, IL-23 and IL-21. This initial activation results in the activation and up-regulation of STAT3, ROR(gamma)t and other transcriptional factors in CD4+ T cells, which bind to the promoter regions of the IL-17, IL-21 and IL-22 genes and induce IL-17, IL-21 and IL-22. In contrast, the differentiation of Th17 cells and their IL-17 expression are negatively regulated by IL-2, Th2 cytokine IL-4, IL-27 and Th1 cytokine IFN-gamma through STAT5, STAT6 and STAT1 activation, respectively. Retinoid acid and the combination of IL-2 and TGF-beta upregulate Foxp3, which also downregulates cytokines like IL-17 and IL-21. The inhibition of Th17 differentiation may serve as a protective strategy to 'fine-tune' the expression IL-17 so it does not cause excessive inflammation. Thus, balanced differentiation of Th cells is crucial for immunity and host protection.
Human relaxin-2 (relaxin), originally identified as a peptidic hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic and angiogenic effects in both males and females. It belongs to the so-called relaxin peptide family which includes the insulin-like peptides INSL3 and INSL5, and relaxin-3 (H3) as well as relaxin. INSL3 has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. These members of relaxin peptide family exert such effects binding to different kinds of receptors, classified as relaxin family peptide (RXFP) receptors: RXFP1, RXFP2, RXFP3, and RXFP4. These G protein-coupled receptors predominantly bind relaxin, INSL3, relaxin-3, and INSL-5, respectively. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Both RXFP3 and RXFP4 inhibit cAMP production, and RXFP3 activate MAP kinases.
Advanced glycation end products (AGEs) are a complex group of compounds produced through the non-enzymatic glycation and oxidation of proteins, lipids and nucleic acids, primarily due to aging and under certain pathologic condition such as huperglycemia. Some of the best chemically characterized AGEs include N-epsilon-carboxy-methyl-lysine (CML), N-epsilon-carboxy-ethyl-lysine (CEL), and Imidazolone. The major receptor for AGEs, known as receptor for advanced glycation end products (RAGE or AGER), belongs to the immunoglobulin superfamily and has been described as a pattern recognition receptor. AGE/RAGE signaling elicits activation of multiple intracellular signal pathways involving NADPH oxidase, protein kinase C, and MAPKs, then resulting in NF-kappaB activity. NF-kappa B promotes the expression of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha and a variety of atherosclerosis-related genes, including VCAM-1, tissue factor, VEGF, and RAGE. In addition, JAK-STAT-mediated and PI3K-Akt-dependent pathways are induced via RAGE, which in turn participate in cell proliferation and apoptosis respectively. Hypoxia-mediated induction of Egr-1 was also shown to require the AGE-RAGE interaction. The results of these signal transductions have been reported to be the possible mechanism that initates diabetic complications.
Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas disease. The parasite life cycle involves hematophagous reduviid bugs as vectors. Once parasites enter the host body, they invade diverse host cells including cardiomyocytes. Establishment of infection depends on various parasite molecules such as cruzipain, oligopeptidase B, and trans-sialidase that activate Ca2+ signaling. Internalized parasites escape from the parasitophorous vacuole using secreted pore-forming TcTOX molecule and replicate in the cytosol. Multiplied parasites eventually lyse infected host cells and are released in the circulation. During these events, the parasites manipulate host innate immunity and elicit cardiomyocyte hypertrophy. T lymphocyte responses are also disturbed.
Hepatitis B virus (HBV) is an enveloped virus and contains a partially double-stranded relaxed circular DNA (RC-DNA) genome. After entry into hepatocytes, HBV RC-DNA is transported to the nucleus and converted into a covalently closed circular molecule cccDNA. The cccDNA is the template for transcription of all viral RNAs including the pregenomic RNA (pgRNA), encoding for 7 viral proteins: large, middle, and small envelope proteins (LHBs, MHBs, and SHBs) that form the surface antigen (HBsAg), the core antigen (HBcAg), the e antigen (HBeAg), the HBV polymerase, and the regulatory protein X (HBx). The pgRNA interacts with the viral polymerase protein to initiate the encapsidation into the core particles. Through endoplasmic reticulum, the core particles finish assembling with the envelope proteins and are released. HBV infection leads to a wide spectrum of liver diseases raging from chronic hepatitis, cirrhosis to hepatocellular carcinoma. The mechanism of liver injury is still not clear. However, HBV proteins target host proteins, involved in a variety of functions, thus regulating transcription, cellular signaling cascades, proliferation, differentiation, and apoptosis.
Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, SRF, and NFAT.
Colorectal cancer (CRC) is the second largest cause of cancer-related deaths in Western countries. CRC arises from the colorectal epithelium as a result of the accumulation of genetic alterations in defined oncogenes and tumour suppressor genes (TSG). Two major mechanisms of genomic instability have been identified in sporadic CRC progression. The first, known as chromosomal instability (CIN), results from a series of genetic changes that involve the activation of oncogenes such as K-ras and inactivation of TSG such as p53, DCC/Smad4, and APC. The second, known as microsatellite instability (MSI), results from inactivation of the DNA mismatch repair genes MLH1 and/or MSH2 by hypermethylation of their promoter, and secondary mutation of genes with coding microsatellites, such as transforming growth factor receptor II (TGF-RII) and BAX. Hereditary syndromes have germline mutations in specific genes (mutation in the tumour suppressor gene APC on chromosome 5q in FAP, mutated DNA mismatch repair genes in HNPCC).
Infiltrating ductal adenocarcinoma is the most common malignancy of the pancreas. When most investigators use the term 'pancreatic cancer' they are referring to pancreatic ductal adenocarcinoma (PDA). Normal duct epithelium progresses to infiltrating cancer through a series of histologically defined precursors (PanINs). The overexpression of HER-2/neu and activating point mutations in the K-ras gene occur early, inactivation of the p16 gene at an intermediate stage, and the inactivation of p53, SMAD4, and BRCA2 occur relatively late. Activated K-ras engages multiple effector pathways. Although EGF receptors are conventionally regarded as upstream activators of RAS proteins, they can also act as RAS signal transducers via RAS-induced autocrine activation of the EGFR family ligands. Moreover, PDA shows extensive genomic instability and aneuploidy. Telomere attrition and mutations in p53 and BRCA2 are likely to contribute to these phenotypes. Inactivation of the SMAD4 tumour suppressor gene leads to loss of the inhibitory influence of the transforming growth factor-beta signalling pathway.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of a pluripotent stem cell. The natural history of CML has a triphasic clinical course comprising of an initial chronic phase (CP), which is characterized by expansion of functionally normal myeloid cells, followed by an accelerated phase (AP) and finally a more aggressive blast phase (BP), with loss of terminal differentiation capacity. On the cellular level, CML is associated with a specific chromosome abnormality, the t(9; 22) reciprocal translocation that forms the Philadelphia (Ph) chromosome. The Ph chromosome is the result of a molecular rearrangement between the c-ABL proto-oncogene on chromosome 9 and the BCR (breakpoint cluster region) gene on chromosome 22. The BCR/ABL fusion gene encodes p210 BCR/ABL, an oncoprotein, which, unlike the normal p145 c-Abl, has constitutive tyrosine kinase activity and is predominantly localized in the cytoplasm. While fusion of c-ABL and BCR is believed to be the primary cause of the chronic phase of CML, progression to blast crisis requires other molecular changes. Common secondary abnormalities include mutations in TP53, RB, and p16/INK4A, or overexpression of genes such as EVI1. Additional chromosome translocations are also observed,such as t(3;21)(q26;q22), which generates AML1-EVI1.
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and one of the rare human neoplasms etiologically linked to viral factors. It has been shown that, after HBV/HCV infection and alcohol or aflatoxin B1 exposure, genetic and epigenetic changes occur. The recurrent mutated genes were found to be highly enriched in multiple key driver signaling processes, including telomere maintenance, TP53, cell cycle regulation, the Wnt/beta-catenin pathway (CTNNB1 and AXIN1), the phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Recent studies using whole-exome sequencing have revealed recurrent mutations in new driver genes involved in the chromatin remodelling (ARID1A and ARID2) and the oxidative stress (NFE2L2) pathways.
Gastric cancer (GC) is one of the world's most common cancers. According to Lauren's histological classification gastric cancer is divided into two distinct histological groups - the intestinal and diffuse types. Several genetic changes have been identified in intestinal-type GC. The intestinal metaplasia is characterized by mutations in p53 gene, reduced expression of retinoic acid receptor beta (RAR-beta) and hTERT expression. Gastric adenomas furthermore display mutations in the APC gene, reduced p27 expression and cyclin E amplification. In addition, amplification and overexpression of c-ErbB2, reduced TGF-beta receptor type I (TGFBRI) expression and complete loss of p27 expression are commonly observed in more advanced GC. The main molecular changes observed in diffuse-type GCs include loss of E-cadherin function by mutations in CDH1 and amplification of MET and FGFR2F.
Inflammatory bowel disease (IBD), which includes Crohn disease (CD) and ulcerative colitis (UC), is characterized by chronic inflammation of the gastrointestinal tract due to environmental and genetic factors, infectious microbes, and the dysregulated immune system. Although many environmental factors (for example, geographic locations, smoking, etc.) affect the development of IBD, the most crucial might be the luminal (external) environment of the epithelial cells. There are pathogens that are found in increasing frequency in IBD. The microbial components such as flagellin, peptidoglycan, and lipopolysaccharide are recognized by receptors such as toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) proteins, and also by antigen-presenting cells (APCs) in genetically susceptible host. The TLR recognition triggers the activation of NF-kappaB, leading to an inflammatory response. APC-expressed gene NOD2 has been associated with Crohn disease. In case of mutations of NOD2, negative regulation of IL-12 production is reduced with the stimulation of muramyl dipeptide (MDP), leading to CD. In addition, the APC mediates the differentiation of naive T cells into effector T cells (Th1, Th17, Th2) and natural killer T (NKT) cells. Th1 and Th17 cells produce high levels of IFN-gamma and IL-17, -22, respectively, both of which promote CD. In contrast, Th2 cells produce IL-4, -5, -10, which together with IL-13 from NKT induce UC.
Signaling by NODAL is essential for patterning of the axes of the embryo and formation of mesoderm and endoderm (reviewed in Schier 2009, Shen 2007). The NODAL proprotein is secreted and cleaved extracellularly to yield mature NODAL. Mature NODAL homodimerizes and can also form heterodimers with LEFTY1, LEFTY2, or CERBERUS, which negatively regulate NODAL signaling. NODAL also forms heterodimers with GDF1, which increases NODAL activity. NODAL dimers bind the NODAL receptor comprising a type I Activin receptor (ACVR1B or ACVR1C), a type II Activin receptor (ACVR2A or ACVR2B), and an EGF-CFC coreceptor (CRIPTO or CRYPTIC). After binding NODAL, the type II activin receptor phosphorylates the type I activin receptor which then phosphorylates SMAD2 and SMAD3 (R-SMADs). Phosphorylated SMAD2 and SMAD3 form hetero-oligomeric complexes with SMAD4 (CO-SMAD) and transit from the cytosol to the nucleus. Within the nucleus the SMAD complexes interact with transcription factors such as FOXH1 to activate transcription of target genes
Activin was initially discovered as an activator of follicle stimulating hormone in the pituitary gland. It has since been shown to be an important participant in the differentiation of embryonic cells into mesodermal and endodermal layers. Activin binds the Activin receptor and triggers downstream events: phosphorylation of SMAD2 and SMAD3 followed by activation of gene expression (reviewed in Attisano et al. 1996, Willis et al. 1996, Chen et al. 2006, Hinck 2012). Activins are dimers comprising activin A (INHBA:INHBA), activin AB (INHBA:INHBB), and activin B (INHBB:INHBB). Activin first binds the type II receptor (ACVR2A, ACVR2B) and this complex then interacts with the type I receptor (ACVR1B, ACVR1C) (Attisano et al. 1996). The type II receptor phosphorylates the type I receptor and then the phosphorylated type I receptor phosphorylates SMAD2 and SMAD3. Dimers of phosphorylated SMAD2/3 bind SMAD4 and the resulting ternary complex enters the nucleus and activates target genes
TGF-beta receptor signaling is downregulated by proteasome and lysosome-mediated degradation of ubiquitinated TGFBR1, SMAD2 and SMAD3, as well as by dephosphorylation of TGFBR1, SMAD2 and SMAD3. In the nucleus, SMAD2/3:SMAD4 complex stimulates transcription of SMAD7, an inhibitory SMAD (I-SMAD). SMAD7 binds phosphorylated TGFBR1 and competes with the binding of SMAD2 and SMAD3 (Hayashi et al. 1997, Nakao et al. 1997). Binding of SMAD7 to TGBR1 can be stabilized by STRAP, a protein that simultaneously binds SMAD7 and TGFBR1 (Datta et al. 2000). BAMBI simultaneously binds SMAD7 and activated TGFBR1, leading to downregulation of TGF-beta receptor complex signaling (Onichtchouk et al. 1999, Yan et al. 2009). In addition to competing with SMAD2/3 binding to TGFBR1, SMAD7 recruits protein phosphatase PP1 to phosphorylated TGFBR1, by binding to the PP1 regulatory subunit PPP1R15A (GADD34). PP1 dephosphorylates TGFBR1, preventing the activation of SMAD2/3 and propagation of TGF-beta signal (Shi et al. 2004). SMAD7 associates with several ubiquitin ligases, SMURF1 (Ebisawa et al. 2001, Suzuki et al. 2002, Tajima et al. 2003, Chong et al. 2010), SMURF2 (Kavsak et al. 2000, Ogunjimi et al. 2005), and NEDD4L (Kuratomi et al. 2005), and recruits them to phosphorylated TGFBR1 within TGFBR complex. SMURF1, SMURF2 and NEDD4L ubiquitinate TGFBR1 (and SMAD7), targeting TGFBR complex for proteasome and lysosome-dependent degradation (Ebisawa et al. 2001, Kavsak et al. 2000, Kuratomi et al. 2005). The ubiquitination of TGFBR1 can be reversed by deubiquitinating enzymes, UCHL5 (UCH37) and USP15, which may be recruited to ubiquitinated TGFBR1 by SMAD7 (Wicks et al. 2005, Eichhorn et al. 2012). Basal levels of SMAD2 and SMAD3 are maintained by SMURF2 and STUB1 ubiquitin ligases. SMURF2 is able to bind and ubiquitinate SMAD2, leading to SMAD2 degradation (Zhang et al. 2001), but this has been questioned by a recent study of Smurf2 knockout mice (Tang et al. 2011). STUB1 (CHIP) binds and ubiquitinates SMAD3, leading to SMAD3 degradation (Li et al. 2004, Xin et al. 2005). PMEPA1 can bind and sequester unphosphorylated SMAD2 and SMAD3, preventing their activation in response to TGF-beta signaling. In addition, PMEPA1 can bind and sequester phosphorylated SMAD2 and SMAD3, preventing formation of SMAD2/3:SMAD4 heterotrimer complexes (Watanabe et al. 2010). A protein phosphatase MTMR4, residing in the membrane of early endosomes, can dephosphorylate activated SMAD2 and SMAD3, preventing formation of SMAD2/3:SMAD4 complexes (Yu et al. 2010)
Binding of transforming growth factor beta 1 (TGF beta 1, i.e. TGFB1) to TGF beta receptor type 2 (TGFBR2) activates TGF beta receptor signaling cascade. TGFB1 is posttranslationally processed by furin (Dubois et al. 1995) to form a homodimer and secreted to the extracellular space as part of the large latent complex (LLC). After the LLC disassembles in the extracellular space, dimeric TGFB1 becomes capable of binding to TGFBR2 (Annes et al. 2003, Keski Oja et al. 2004). Formation of TGFB1:TGFBR2 complex creates a binding pocket for TGF-beta receptor type-1 (TGFBR1) and TGFBR1 is recruited to the complex by binding to both TGFB1 and TGFBR2. This results in an active heterotetrameric TGF-beta receptor complex that consists of TGFB1 homodimer bound to two heterodimers of TGFBR1 and TGFBR2 (Wrana et al. 1992, Moustakas et al. 1993, Franzen et al. 1993). TGF-beta signaling can also occur through a single heterodimer of TGFBR1 and TGFBR2, although with decreased efficiency (Huang et al. 2011). TGFBR1 and TGFBR2 interact through their extracellular domains, which brings their cytoplasmic domains together. Ligand binding to extracellular receptor domains is cooperative, but no conformational change is seen from crystal structures of either TGFB1- or TGFB3-bound heterotetrameric receptor complexes (Groppe et al. 2008, Radaev et al. 2010).Activation of TGFBR1 by TGFBR2 in the absence of ligand is prevented by FKBP1A (FKBP12), a peptidyl-prolyl cis-trans isomerase. FKBP1A forms a complex with inactive TGFBR1 and dissociates from it only after TGFBR1 is recruited by TGFB1-bound TGFBR2 (Chen et al. 1997). Both TGFBR1 and TGFBR2 are receptor serine/threonine kinases. Formation of the hetero-tetrameric TGF-beta receptor complex (TGFBR) in response to TGFB1 binding induces receptor rotation, so that TGFBR2 and TGFBR1 cytoplasmic kinase domains face each other in a catalytically favourable configuration. TGFBR2 trans-phosphorylates serine residues at the conserved Gly-Ser-rich juxtapositioned domain (GS domain) of TGFBR1 (Wrana et al. 1994, Souchelnytskyi et al. 1996), activating TGFBR1.In addition to phosphorylation, TGFBR1 may also be sumoylated in response to TGF-beta stimulation. Sumoylation enhances TGFBR1 kinase activity (Kang et al. 2008). The activated TGFBR complex is internalized by clathrin-mediated endocytosis into early endosomes. With the assistance of SARA, an early endosome membrane protein, phosphorylated TGFBR1 within TGFBR complex recruits SMAD2 and/or SMAD3 , i.e. R-SMADs (Tsukazaki et al. 1998). TGFBR1 phosphorylates recruited SMAD2/3 on two C-terminal serine residues (Souchelnytskyi et al. 2001). The phosphorylation changes the conformation of SMAD2/3 MH2 domain, promoting dissociation of SMAD2/3 from SARA and TGFBR1 (Souchelnytskyi et al. 1997, Macias-Silva et al. 1996, Nakao et al. 1997) and formation of SMAD2/3 trimers (Chacko et al. 2004). The phosphorylated C-terminal tail of SMAD2/3 has high affinity for SMAD4 (Co-SMAD), inducing formation of SMAD2/3:SMAD4 heterotrimers, composed of two phosphorylated R-SMADs (SMAD2 and/or SMAD3) and SMAD4 (Co-SMAD). SMAD2/3:SMAD4 heterotrimers are energetically favored over R-SMAD trimers (Nakao et al. 1997, Qin et al. 2001, Kawabata et al. 1998, Chacko et al. 2004). SMAD2/3:SMAD4 heterotrimers translocate to the nucleus where they act as transcriptional regulators
Transcriptional activity of SMAD2/3:SMAD4 heterotrimer can be inhibited by formation of a complex with SKI or SKIL (SNO), where SKI or SKIL recruit NCOR and possibly other transcriptional repressors to SMAD-binding promoter elements (Sun et al. 1999, Luo et al. 1999, Strochein et al. 1999). Higher levels of phosphorylated SMAD2 and SMAD3, however, may target SKI and SKIL for degradation (Strochein et al. 1999, Sun et al. 1999 PNAS, Bonni et al. 2001) through recruitment of SMURF2 (Bonni et al. 2001) or RNF111 i.e. Arkadia (Levy et al. 2007) ubiquitin ligases to SKI/SKIL by SMAD2/3. Therefore,the ratio of SMAD2/3 and SKI/SKIL determines the outcome: inhibition of SMAD2/3:SMAD4-mediated transcription or degradation of SKI/SKIL. SKI and SKIL are overexpressed in various cancer types and their oncogenic effect is connected with their ability to inhibit signaling by TGF-beta receptor complex. SMAD4 can be monoubiquitinated by a nuclear ubiquitin ligase TRIM33 (Ecto, Ectodermin, Tif1-gamma). Monoubiquitination of SMAD4 disrupts SMAD2/3:SMAD4 heterotrimers and leads to SMAD4 translocation to the cytosol. In the cytosol, SMAD4 can be deubiquitinated by USP9X (FAM), reversing TRIM33-mediated negative regulation (Dupont et al. 2009).Phosphorylation of the linker region of SMAD2 and SMAD3 by CDK8 or CDK9 primes SMAD2/3:SMAD4 complex for ubiquitination by NEDD4L and SMURF ubiquitin ligases. NEDD4L ubiquitinates SMAD2/3 and targets SMAD2/3:SMAD4 heterotrimer for degradation (Gao et al. 2009). SMURF2 monoubiquitinates SMAD2/3, leading to disruption of SMAD2/3:SMAD4 complexes (Tang et al. 2011). Transcriptional repressors TGIF1 and TGIF2 bind SMAD2/3:SMAD4 complexes and inhibit SMAD-mediated transcription by recruitment of histone deacetylase HDAC1 to SMAD-binding promoter elements (Wotton et al. 1999, Melhuish et al. 2001).PARP1 can attach poly ADP-ribosyl chains to SMAD3 and SMAD4 within SMAD2/3:SMAD4 heterotrimers. PARylated SMAD2/3:SMAD4 complexes are unable to bind SMAD-binding DNA elements (SBEs) (Lonn et al. 2010). Phosphorylated SMAD2 and SMAD3 can be dephosphorylated by PPM1A protein phosphatase, leading to dissociation of SMAD2/3 complexes and translocation of unphosphorylated SMAD2/3 to the cytosol (Lin et al. 2006)
After phosphorylated SMAD2 and/or SMAD3 form a heterotrimer with SMAD4, SMAD2/3:SMAD4 complex translocates to the nucleus (Xu et al. 2000, Kurisaki et al. 2001, Xiao et al. 2003). In the nucleus, linker regions of SMAD2 and SMAD3 within SMAD2/3:SMAD4 complex can be phosphorylated by CDK8 associated with cyclin C (CDK8:CCNC) or CDK9 associated with cyclin T (CDK9:CCNT). CDK8/CDK9-mediated phosphorylation of SMAD2/3 enhances transcriptional activity of SMAD2/3:SMAD4 complex, but also primes it for ubiquitination and consequent degradation (Alarcon et al. 2009). The transfer of SMAD2/3:SMAD4 complex to the nucleus can be assisted by other proteins, such as WWTR1. In human embryonic cells, WWTR1 (TAZ) binds SMAD2/3:SMAD4 heterotrimer and mediates TGF-beta-dependent nuclear accumulation of SMAD2/3:SMAD4. The complex of WWTR1 and SMAD2/3:SMAD4 binds promoters of SMAD7 and SERPINE1 (PAI-1 i.e. plasminogen activator inhibitor 1) genes and stimulates their transcription (Varelas et al. 2008). Stimulation of SMAD7 transcription by SMAD2/3:SMAD4 represents a negative feedback loop in TGF-beta receptor signaling. SMAD7 can be downregulated by RNF111 ubiquitin ligase (Arkadia), which binds and ubiquitinates SMAD7, targeting it for degradation (Koinuma et al. 2003). SMAD2/3:SMAD4 heterotrimer also binds the complex of RBL1 (p107), E2F4/5 and TFDP1/2 (DP1/2). The resulting complex binds MYC promoter and inhibits MYC transcription. Inhibition of MYC transcription contributes to anti-proliferative effect of TGF-beta (Chen et al. 2002). SMAD2/3:SMAD4 heterotrimer also associates with transcription factor SP1. SMAD2/3:SMAD4:SP1 complex stimulates transcription of a CDK inhibitor CDKN2B (p15-INK4B), also contributing to the anti-proliferative effect of TGF-beta (Feng et al. 2000). MEN1 (menin), a transcription factor tumor suppressor mutated in a familial cancer syndrome multiple endocrine neoplasia type 1, forms a complex with SMAD2/3:SMAD4 heterotrimer, but transcriptional targets of SMAD2/3:SMAD4:MEN1 have not been elucidated (Kaji et al. 2001, Sowa et al. 2004, Canaff et al. 2012). JUNB is also an established transcriptional target of SMAD2/3:SMAD4 complex (Wong et al. 1999)
The conserved phosphorylation motif Ser-Ser-X-Ser at the C-terminus of SMAD2 and SMAD3 is subject to disruptive mutations in cancer. The last two serine residues in this conserved motif, namely Ser465 and Ser467 in SMAD2 and Ser423 and Ser425 in SMAD3, are phosphorylated by the activated TGF beta receptor complex (Macias Silva et al. 1996, Nakao et al. 1997). Once phosphorylated, SMAD2 and SMAD3 form transcriptionally active heterotrimers with SMAD4 (Chacko et al. 2001, Chacko et al. 2004). Phosphorylation motif mutants of SMAD2 and SMAD3 cannot be activated by the TGF-beta receptor complex either because serine residues are substituted with amino acid residues that cannot be phosphorylated or because the phosphorylation motif is deleted from the protein sequence or truncated (Fleming et al. 2013)
The MH2 domain of SMAD4 is the most frequently mutated SMAD4 region in cancer. MH2 domain mutations result in the loss of function of SMAD4 by abrogating the formation of transcriptionally active heterotrimers of SMAD4 and TGF-beta receptor complex-activated R-SMADs - SMAD2 and SMAD3 (Shi et al. 1997, Chacko et al. 2001, Chacko et al. 2004, Fleming et al. 2013).The hotspot MH2 domain amino acid residues that are targeted by missense mutations are Asp351 (D351), Pro356 (P356) and Arg361 (R361). These three hotspot residues map to the L1 loop which is conserved in SMAD2 and SMAD3 and is involved in intermolecular interactions that contribute to the formation of SMAD heterotrimers and homotrimers (Shi et al. 1997, Fleming et al. 2013). Other frequently mutated residues in the MH2 domain of SMAD4 - Ala406 (A406), Lys428 (K428) and Arg515 (R515) - are involved in binding the phosphorylation motif (Ser-Ser-X-Ser) of SMAD2 and SMAD3, with Arg515 in the L3 loop being critical for this interaction (Chacko et al. 2001, Chacko et al. 2004, Fleming et al. 2013)
Mutations in the MH2 domain of SMAD2 and SMAD3 affect their ability to form heterotrimers with SMAD4, thereby impairing TGF-beta signaling (Fleming et al. 2013).The SMAD2 and SMAD3 MH2 domain residues most frequently targeted by missense mutations are those that are homologous to SMAD4 MH2 domain residues shown to be involved in the formation of SMAD heterotrimers. Asp300 of SMAD2 and Asp258 of SMAD3 correspond to the frequently mutated Asp351 of SMAD4. Pro305 of SMAD2 corresponds to the frequently mutated Pro356 of SMAD4, while Ala354 of SMAD2 corresponds to Ala406 of SMAD4. Arg268 of SMAD3 corresponds to the frequently mutated Arg361 of SMAD4. SMAD2 and SMAD3 MH2 domain mutations have been examined in most detail in colorectal cancer (Fleming et al. 2013)
Mutations in the kinase domain (KD) of TGF-beta receptor 1 (TGFBR1) have been found in Ferguson-Smith tumor i.e. multiple self-healing squamous epithelioma - MSSE (Goudie et al. 2011), breast cancer (Chen et al. 1998), ovarian cancer (Chen et al. 2001) and head-and-neck cancer (Chen et al. 2001). KD mutations reported in MSSE are nonsense and frameshift mutations that cause premature termination of TGFBR1 translation, resulting in truncated receptors that lack substantial portions of the kinase domain, or cause nonsense-mediated decay of mutant transcripts. A splice site KD mutation c.806-2A>C is predicted to result in the skipping of exon 5 and the absence of KD amino acid residues 269-324 from the mutant receptor. The splice site mutant is expressed at the cell surface but unresponsive to TGF-beta stimulation (Goudie et al. 2004).TGFBR1 KD mutations reported in breast, ovarian and head-and-neck cancer are missense mutations, and it appears that these mutant proteins are partially functional but that their catalytic activity or protein stability is decreased (Chen et al. 1998, Chen et al. 2001a and b). These mutants are not shown
Ub-specific processing proteases (USPs) are the largest of the DUB families with more than 50 members in humans. The USP catalytic domain varies considerably in size and consists of six conserved motifs with N- or C-terminal extensions and insertions occurring between the conserved motifs (Ye et al. 2009). Two highly conserved regions comprise the catalytic triad, the Cys-box (Cys) and His-box (His and Asp/Asn) (Nijman et al. 2005, Ye et al. 2009, Reyes-Turcu & Wilkinson 2009). They recognize their substrates by interactions of the variable regions with the substrate protein directly, or via scaffolds or adapters in multiprotein complexes
RUNX3 contributes to the upregulation of the CDKN1A (p21) gene transcription in response to TGF-beta (TGFB1) signaling. RUNX3 binds to SMAD3 and SMAD4, and cooperates with the activated SMAD3:SMAD4 complex in transactivation of CDKN1A. Runx3 knockout mice exhibit decreased sensitivity to TGF-beta and develop gastric epithelial hyperplasia (Chi et al. 2005). In response to TGF-beta signaling, the CBFB:RUNX3 complex binds to the tumor suppressor ZFHX3 (ATBF1) and, through an unknown mechanism, this complex positively regulates the CDKN1A transcription (Mabuchi et al. 2010).In addition, RUNX3 may act as a TP53 co-factor, stimulating TP53-mediated transcription of target genes, including CDKN1A (p21) (Yamada et al. 2010)
In response to TGF-beta signaling, RUNX3, in cooperation with activated SMADs and FOXO3A, induces transcription of the pro-apoptotic gene BCL2L11 (BIM) (Wildey et al. 2003, Yano et al. 2006, Yamamura et al. 2006)
Interleukins (IL) are immunomodulatory proteins that elicit a wide array of responses in cells and tissues. Interleukin 37 (IL37), also known as IL 1F7, is a member of the IL 1 family (Sharma et al. 2008). Isoform b of IL37 (referred just as IL37) is synthesized as a precursor that requires processing (primarily by caspase 1) to attain full receptor agonist or antagonist function (Kumar et al. 2002). Both full length and processed IL37 can bind to the IL 18 binding protein (IL 18BP) and the Interleukin 18 receptor 1 (IL 18R1) (Shi et al. 2003). Upon binding to the IL18R1, IL37 recruits Single Ig IL 1 related receptor (SIGIRR) (Nold-Petry et al. 2015). The IL37:IL18R1 complex can activate phosphorylation of Signal transducer and activator of transcription 3 (STAT3), Tyrosine protein kinase Mer and Phosphatidylinositol 3,4,5 trisphosphate 3 phosphatase and dual specificity protein phosphatase PTEN and can also inhibit Nuclear factor NF kappa B p105 subunit (NFKB) (Nold-Petry et al. 2015). Processed IL37 can be secreted from the cytosol to the extracellular space or translocated into the nucleus (Bulau et al. 2014). Full length IL37 can also be secreted from the cytosol to the extracellular space (Bulau et al. 2014). Processed IL37 can bind with Mothers against decapentaplegic homolog 3 (SMAD3) in the cytosol and then translocate to the nucleus, where it facilitates transcription of Tyrosine protein phosphatase non receptors (PTPNs) (Nold et al. 2010, Luo et al. 2017). These events ultimately lead to suppression of cytokine production in several types of immune cells resulting in reduced inflammation
In the nucleus, NOTCH4 intracellular domain fragment (NICD4) binds transcription factors RBPJ (CSL) and mastermind family members (MAML1, MAML2 or MAML3) to form the NOTCH4 co-activator complex (Lin et al. 2002). The NOTCH4 coactivator complex stimulates transcription of well-established NOTCH targets HES1, HES5, HEY1 and HEY2 in a cellular context-dependent manner (Lin et al. 2002, Raafat et al.2004, Tsunematsu et al. 2004, Bargo et al. 2010). NOTCH4 also stimulates transcription of the FLT4 (VEGFR3) gene, encoding vascular endothelial growth factor receptor-3 (Shawber et al. 2007) and ACTA2 gene, encoding smooth muscle alpha actin (Tang et al. 2008).NICD4 inhibits TGF-beta-induced SMAD-mediated transcription via binding of NICD4 to TGF-beta activated SMAD3 (Sun et al. 2005, Grabias and Konstantopoulos 2013)
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, coimmunoprecipitation, cosedimentation through density gradient, proximity ligation assay, pull down, tandem affinity purification
association, direct interaction, physical, physical association
Affinity Capture-Western, Co-crystal Structure, Reconstituted Complex, Two-hybrid, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-Luminescence, Affinity Capture-MS, Affinity Capture-Western, Co-crystal Structure, PCA, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, barcode fusion genetics two hybrid, proximity ligation assay, pull down, tandem affinity purification, two hybrid, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-MS, Phenotypic Enhancement, Reconstituted Complex, Two-hybrid, far western blotting, pull down, tandem affinity purification, two hybrid
Affinity Capture-Western, Two-hybrid, two hybrid array, two hybrid bait and prey pooling approach, two hybrid prey pooling approach, validated two hybrid
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, coimmunoprecipitation, cosedimentation through density gradient, proximity ligation assay, pull down, tandem affinity purification
association, direct interaction, physical, physical association
Affinity Capture-Western, Co-crystal Structure, Reconstituted Complex, Two-hybrid, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-Luminescence, Affinity Capture-MS, Affinity Capture-Western, Co-crystal Structure, PCA, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, barcode fusion genetics two hybrid, proximity ligation assay, pull down, tandem affinity purification, two hybrid, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-MS, Phenotypic Enhancement, Reconstituted Complex, Two-hybrid, far western blotting, pull down, tandem affinity purification, two hybrid
Affinity Capture-Western, Two-hybrid, two hybrid array, two hybrid bait and prey pooling approach, two hybrid prey pooling approach, validated two hybrid
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, coimmunoprecipitation, cosedimentation through density gradient, proximity ligation assay, pull down, tandem affinity purification
association, direct interaction, physical, physical association
Affinity Capture-Western, Co-crystal Structure, Reconstituted Complex, Two-hybrid, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-Luminescence, Affinity Capture-MS, Affinity Capture-Western, Co-crystal Structure, PCA, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, barcode fusion genetics two hybrid, proximity ligation assay, pull down, tandem affinity purification, two hybrid, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, coimmunoprecipitation, cosedimentation through density gradient, proximity ligation assay, pull down, tandem affinity purification
association, direct interaction, physical, physical association
Affinity Capture-Western, Co-crystal Structure, Reconstituted Complex, Two-hybrid, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-Luminescence, Affinity Capture-MS, Affinity Capture-Western, Co-crystal Structure, PCA, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, barcode fusion genetics two hybrid, proximity ligation assay, pull down, tandem affinity purification, two hybrid, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-MS, Phenotypic Enhancement, Reconstituted Complex, Two-hybrid, far western blotting, pull down, tandem affinity purification, two hybrid
Affinity Capture-Western, Two-hybrid, two hybrid array, two hybrid bait and prey pooling approach, two hybrid prey pooling approach, validated two hybrid
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification, two hybrid array, two hybrid bait and prey pooling approach, validated two hybrid