241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Receptor tyrosine kinase which mediates the pleiotropicactions of insulin Binding of insulin leads to phosphorylation ofseveral intracellular substrates, including, insulin receptorsubstrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signalingintermediates Each of these phosphorylated proteins serve asdocking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognizedifferent phosphotyrosine residues, including the p85 regulatorysubunit of PI3K and SHP2 Phosphorylation of IRSs proteins lead tothe activation of two main signaling pathways: the PI3K-AKT/PKBpathway, which is responsible for most of the metabolic actions ofinsulin, and the Ras-MAPK pathway, which regulates expression ofsome genes and cooperates with the PI3K pathway to control cellgrowth and differentiation Binding of the SH2 domains of PI3K tophosphotyrosines on IRS1 leads to the activation of PI3K and thegeneration of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3),a lipid second messenger, which activates several PIP3-dependentserine/threonine kinases, such as PDPK1 and subsequently AKT/PKBThe net effect of this pathway is to produce a translocation ofthe glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles tothe cell membrane to facilitate glucose transport Moreover, uponinsulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD;regulates the expression of gluconeogenic and lipogenic enzymes bycontrolling the activity of the winged helix or forkhead (FOX)class of transcription factors Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulatescell growth and metabolism and integrates signals from insulinAKT mediates insulin-stimulated protein synthesis byphosphorylating TSC2 thereby activating mTORC1 pathway TheRas/RAF/MAP2K/MAPK pathway is mainly involved in mediating cellgrowth, survival and cellular differentiation of insulinPhosphorylated IRS1 recruits GRB2/SOS complex, which triggers theactivation of the Ras/RAF/MAP2K/MAPK pathway In addition tobinding insulin, the insulin receptor can bind insulin-like growthfactors (IGFI and IGFII) Isoform Short has a higher affinity forIGFII binding When present in a hybrid receptor with IGF1R, bindsIGF1 PubMed:12138094 shows that hybrid receptors composed ofIGF1R and INSR isoform Long are activated with a high affinity byIGF1, with low affinity by IGF2 and not significantly activated byinsulin, and that hybrid receptors composed of IGF1R and INSRisoform Short are activated by IGF1, IGF2 and insulin Incontrast, PubMed:16831875 shows that hybrid receptors composed ofIGF1R and INSR isoform Long and hybrid receptors composed of IGF1Rand INSR isoform Short have similar binding characteristics, bothbind IGF1 and have a low affinity for insulin
Catalytic Activity (UniProt annotation)
ATP + a [protein]-L-tyrosine = ADP + a[protein]-L-tyrosine phosphate
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli.
The Ras proteins are GTPases that function as molecular switches for signaling pathways regulating cell proliferation, survival, growth, migration, differentiation or cytoskeletal dynamism. Ras proteins transduce signals from extracellular growth factors by cycling between inactive GDP-bound and active GTP-bound states. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Activated RAS (RAS-GTP) regulates multiple cellular functions through effectors including Raf, phosphatidylinositol 3-kinase (PI3K) and Ral guanine nucleotide-dissociation stimulator (RALGDS).
Rap1 is a small GTPase that controls diverse processes, such as cell adhesion, cell-cell junction formation and cell polarity. Like all G proteins, Rap1 cycles between an inactive GDP-bound and an active GTP-bound conformation. A variety of extracellular signals control this cycle through the regulation of several unique guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types.
Cyclic GMP (cGMP) is the intracellular second messenger that mediates the action of nitric oxide (NO) and natriuretic peptides (NPs), regulating a broad array of physiologic processes. The elevated intracellular cGMP level exerts its physiological action through two forms of cGMP-dependent protein kinase (PKG), cGMP-regulated phosphodiesterases (PDE2, PDE3) and cGMP-gated cation channels, among which PKGs might be the primary mediator. PKG1 isoform-specific activation of established substrates leads to reduction of cytosolic calcium concentration and/or decrease in the sensitivity of myofilaments to Ca2+ (Ca2+-desensitization), resulting in smooth muscle relaxation. In cardiac myocyte, PKG directly phosphorylates a member of the transient potential receptor canonical channel family, TRPC6, suppressing this nonselective ion channel's Ca2+ conductance, G-alpha-q agonist-induced NFAT activation, and myocyte hypertrophic responses. PKG also opens mitochondrial ATP-sensitive K+ (mitoKATP) channels and subsequent release of ROS triggers cardioprotection.
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis. It consists of two subunits: an inducibly-expressed HIF-1alpha subunit and a constitutively-expressed HIF-1beta subunit. Under normoxia, HIF-1 alpha undergoes hydroxylation at specific prolyl residues which leads to an immediate ubiquitination and subsequent proteasomal degradation of the subunit. In contrast, under hypoxia, HIF-1 alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 encode proteins that increase O2 delivery and mediate adaptive responses to O2 deprivation. Despite its name, HIF-1 is induced not only in response to reduced oxygen availability but also by other stimulants, such as nitric oxide, or various growth factors.
The forkhead box O (FOXO) family of transcription factors regulates the expression of genes in cellular physiological events including apoptosis, cell-cycle control, glucose metabolism, oxidative stress resistance, and longevity. A central regulatory mechanism of FOXO proteins is phosphorylation by the serine-threonine kinase Akt/protein kinase B (Akt/PKB), downstream of phosphatidylinositol 3-kinase (PI3K), in response to insulin or several growth factors. Phosphorylation at three conserved residues results in the export of FOXO proteins from the nucleus to the cytoplasm, thereby decreasing expression of FOXO target genes. In contrast, the stress-activated c-Jun N-terminal kinase (JNK) and the energy sensing AMP-activated protein kinase (AMPK), upon oxidative and nutrient stress stimuli phosphorylate and activate FoxOs. Aside from PKB, JNK and AMPK, FOXOs are regulated by multiple players through several post-translational modifications, including phosphorylation, but also acetylation, methylation and ubiquitylation.
Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). The PLD-produced PA activates signaling proteins and acts as a node within the membrane to which signaling proteins translocate. Several signaling proteins, including Raf-1 and mTOR, directly bind PA to mediate translocation or activation, respectively.
The mammalian (mechanistic) target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase, which exists in two complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 contains mTOR, Raptor, PRAS40, Deptor, mLST8, Tel2 and Tti1. mTORC1 is activated by the presence of growth factors, amino acids, energy status, stress and oxygen levels to regulate several biological processes, including lipid metabolism, autophagy, protein synthesis and ribosome biogenesis. On the other hand, mTORC2, which consists of mTOR, mSin1, Rictor, Protor, Deptor, mLST8, Tel2 and Tti1, responds to growth factors and controls cytoskeletal organization, metabolism and survival.
The phosphatidylinositol 3' -kinase(PI3K)-Akt signaling pathway is activated by many types of cellular stimuli or toxic insults and regulates fundamental cellular functions such as transcription, translation, proliferation, growth, and survival. The binding of growth factors to their receptor tyrosine kinase (RTK) or G protein-coupled receptors (GPCR) stimulates class Ia and Ib PI3K isoforms, respectively. PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) at the cell membrane. PIP3 in turn serves as a second messenger that helps to activate Akt. Once active, Akt can control key cellular processes by phosphorylating substrates involved in apoptosis, protein synthesis, metabolism, and cell cycle.
AMP-activated protein kinase (AMPK) is a serine threonine kinase that is highly conserved through evolution. AMPK system acts as a sensor of cellular energy status. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Several upstream kinases, including liver kinase B1 (LKB1), calcium/calmodulin kinase kinase-beta (CaMKK beta), and TGF-beta-activated kinase-1 (TAK-1), can activate AMPK by phosphorylating a threonine residue on its catalytic alpha-subunit. Once activated, AMPK leads to a concomitant inhibition of energy-consuming biosynthetic pathways, such as protein, fatty acid and glycogen synthesis, and activation of ATP-producing catabolic pathways, such as fatty acid oxidation and glycolysis.
Regulation of longevity depends on genetic and environmental factors. Caloric restriction (CR), that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan. Four pathways have been implicated in mediating the CR effect. These are the insulin like growth factor (IGF-1)/insulin signaling pathway, the sirtuin pathway, the adenosine monophosphate (AMP) activated protein kinase (AMPK) pathway and the target of rapamycin (TOR) pathway. The collective response of these pathways to CR is believed to promote cellular fitness and ultimately longevity via activation of autophagy, stress defense mechanisms, and survival pathways while attenuating proinflammatory mediators and cellular growth. Furthermore, there is evidence supporting that life span extension can be achieved with pharmacologic agents that mimic the effects of caloric restriction, such as rapamycin, via mTOR signaling blockade, resveratrol, by activating SIRT1 activity, and metformin, which seems to be a robust stimulator of AMPK activity. As an aging suppressor, Klotho is an important molecule in aging processes and its overexpression results in longevity.
Aging is a complex process of accumulation of molecular, cellular, and organ damage, leading to loss of function and increased vulnerability to disease and death. Despite the complexity of aging, recent work has shown that dietary restriction (DR) and genetic down-regulation of nutrient-sensing pathways, namely IIS (insulin/insulin-like growth factor signalling) and TOR (target-of- rapamycin) can substantially increase healthy life span of laboratory model organisms. These nutrient signaling pathways are conserved in various organisms. In worms, flies, and mammals, DR reduces signalling through IIS/TOR pathways, deactivating the PI3K/Akt/TOR intracellular signalling cascade and consequently activating the antiaging FOXO family transcription factor(s). In yeast, the effects of DR on life- span extension are associated with reduced activities of the TOR/Sch9 and Ras/PKA pathways and require the serine-threonine kinase Rim15 and transcription factors Gis1 and Msn2/4. These transcription factors (FOXO, DAF-16, Gis1, and Msn2/4) transactivate genes involved in resistance to oxidative stress, energy metabolism, DNA damage repair, glucose metabolism, autophagy and protection of proteins by chaperones.
Cell-cell adherens junctions (AJs), the most common type of intercellular adhesions, are important for maintaining tissue architecture and cell polarity and can limit cell movement and proliferation. At AJs, E-cadherin serves as an essential cell adhesion molecules (CAMs). The cytoplasmic tail binds beta-catenin, which in turn binds alpha-catenin. Alpha-catenin is associated with F-actin bundles directly and indirectly. The integrity of the cadherin-catenin complex is negatively regulated by phosphorylation of beta-catenin by receptor tyrosine kinases (RTKs) and cytoplasmic tyrosine kinases (Fer, Fyn, Yes, and Src), which leads to dissociation of the cadherin-catenin complex. Integrity of this complex is positively regulated by beta -catenin phosphorylation by casein kinase II, and dephosphorylation by protein tyrosine phosphatases. Changes in the phosphorylation state of beta-catenin affect cell-cell adhesion, cell migration and the level of signaling beta-catenin. Wnt signaling acts as a positive regulator of beta-catenin by inhibiting beta-catenin degradation, which stabilizes beta-catenin, and causes its accumulation. Cadherin may acts as a negative regulator of signaling beta-catenin as it binds beta-catenin at the cell surface and thereby sequesters it from the nucleus. Nectins also function as CAMs at AJs, but are more highly concentrated at AJs than E-cadherin. Nectins transduce signals through Cdc42 and Rac, which reorganize the actin cytoskeleton, regulate the formation of AJs, and strengthen cell-cell adhesion.
Insulin binding to its receptor results in the tyrosine phosphorylation of insulin receptor substrates (IRS) by the insulin receptor tyrosine kinase (INSR). This allows association of IRSs with the regulatory subunit of phosphoinositide 3-kinase (PI3K). PI3K activates 3-phosphoinositide-dependent protein kinase 1 (PDK1), which activates Akt, a serine kinase. Akt in turn deactivates glycogen synthase kinase 3 (GSK-3), leading to activation of glycogen synthase (GYS) and thus glycogen synthesis. Activation of Akt also results in the translocation of GLUT4 vesicles from their intracellular pool to the plasma membrane, where they allow uptake of glucose into the cell. Akt also leads to mTOR-mediated activation of protein synthesis by eIF4 and p70S6K. The translocation of GLUT4 protein is also elicited through the CAP/Cbl/TC10 pathway, once Cbl is phosphorylated by INSR.Other signal transduction proteins interact with IRS including GRB2. GRB2 is part of the cascade including SOS, RAS, RAF and MEK that leads to activation of mitogen-activated protein kinase (MAPK) and mitogenic responses in the form of gene transcription. SHC is another substrate of INSR. When tyrosine phosphorylated, SHC associates with GRB2 and can thus activate the RAS/MAPK pathway independently of IRS-1.
The ovarian steroids, 17-beta estradiol (E2) and progesterone (P4), are critical for normal uterine function, establishment and maintenance of pregnancy, and mammary gland development. Furthermore, the local effects that are essential for normal ovarian physiology are dependent on the endocrine, paracrine, and autocrine actions of E2, P4, and androgens. In most mammals (including humans and mice), ovarian steroidogenesis occurs according to the two-cell/two-gonadotropin theory. This theory describes how granulosa and theca cells work together to make the ovarian steroids. Theca cells respond to LH signaling by increasing the expression of enzymes necessary for the conversion of cholesterol to androgens, such as androstenedione (A) and testosterone (T). Granulosa cells respond to FSH signaling by increasing the expression of enzymes necessary for the conversion of theca-derived androgens into estrogens (E2 and estrone).
Lipolysis in adipocytes, the hydrolysis of triacylglycerol (TAG) to release fatty acids (FAs) and glycerol for use by other organs as energy substrates, is a unique function of white adipose tissue. Lipolysis is under tight hormonal control. During fasting, catecholamines, by binding to Gs-coupled-adrenergic receptors (-AR), activate adenylate cyclase (AC) to increase cAMP and activate protein kinase A (PKA). PKA phosphorylates target protein such as hormone-sensitive lipase (HSL) and perilipin 1 (PLIN). PLIN phosphorylation is a key event in the sequential activation of TAG hydrolysis involving adipose triglyceride lipase (ATGL), HSL, and monoglyceride lipase (MGL). During the fed state, insulin, through activation of phosphodiesterase-3B (PDE-3B), inhibits catecholamine-induced lipolysis via the degradation of cAMP.
Insulin resistance is strongly associated with type II diabetes. Diabetogenicfactors including FFA, TNFalpha and cellular stress induce insulin resistance through inhibition of IRS1 functions. Serine/threonine phosphorylation, interaction with SOCS, regulation of the expression, modification of the cellular localization, and degradation represent the molecular mechanisms stimulated by them. Various kinases (ERK, JNK, IKKbeta, PKCzeta, PKCtheta and mTOR) are involved in this process.The development of type II diabetes requires impaired beta-cell function. Chronic hyperglycemia has been shown to induce multiple defects in beta-cells. Hyperglycemia has been proposed to lead to large amounts of reactive oxygen species (ROS) in beta-cells, with subsequent damage to cellular components including PDX-1. Loss of PDX-1, a critical regulator of insulin promoter activity, has also been proposed as an important mechanism leading to beta-cell dysfunction.Although there is little doubt as to the importance of genetic factors in type II diabetes, genetic analysis is difficult due to complex interaction among multiple susceptibility genes and between genetic and environmental factors. Genetic studies have therefore given very diverse results. Kir6.2 and IRS are two of the candidate genes. It is known that Kir6.2 and IRS play central roles in insulin secretion and insulin signal transmission, respectively.
Insulin resistance is a condition where cells become resistant to the effects of insulin. It is often found in people with health disorders, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. In this diagram multiple mechanisms underlying insulin resistance are shown: (a) increased phosphorylation of IRS (insulin receptor substrate) protein through serine/threonine kinases, such as JNK1 and IKKB, and protein kinase C, (b) increased IRS-1 proteasome degradation via mTOR signaling pathway, (c) decreased activation of signaling molecules including PI3K and AKT, (d) increase in activity of phosphatases including PTPs, PTEN, and PP2A. Regulatory actions such as oxidative stress, mitochondrial dysfunction, accumulation of intracellular lipid derivatives (diacylglycrol and ceramides), and inflammation (via IL-6 and TNFA) contribute to these mechanisms. Consequently, insulin resistance causes reduced GLUT4 translocation, resulting in glucose takeup and glycogen synthesis in skeletal muscle as well as increased hepatic gluconeogenesis and decreased glycogen synthesis in liver. At the bottom of the diagram, interplay between O-GlcNAcylation and serine/threonine phosphorylation is shown. Studies suggested that elevated O-GlcNAc level was correlated to high glucose-induced insulin resistance. Donor UDP-GlcNAc is induced through hexosamine biosynthesis pathway and added to proteins by O-GlcNAc transferase. Elevation of O-GlcNAc modification alters phosphorylation and function of key insulin signaling proteins including IRS-1, PI3K, PDK1, Akt and other transcription factor and cofactors, resulting in the attenuation of insulin signaling cascade.
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum ranging from simple steatosis to more severe steatohepatitis with hepatic inflammation and fibrosis, known as nonalcoholic steatohepatitis (NASH). NASH may further lead to cirrhosis and hepatocellular carcinoma (HCC). This map shows a stage-dependent progression of NAFLD. In the first stage of NAFLD, excess lipid accumulation has been demonstrated. The main cause is the induction of insulin resistance, which leads to a defect in insulin suppression of free fatty acids (FAAs) disposal. In addition, two transcription factors, SREBP-1c and PPAR-alpha, activate key enzymes of lipogenesis and increase the synthesis of FAAs in liver. In the second stage, as a consequence of the progression to NASH, the production of reactive oxygen species (ROS) is enhanced due to oxidation stress through mitochondrial beta-oxidation of fatty acids and endoplamic reticulum (ER) stress, leading to lipid peroxidation. The lipid peroxidation can further cause the production of cytokines (Fas ligand, TNF-alpha, IL-8 and TGF), promoting cell death, inflammation and fibrosis. The activation of JNK, which is induced by ER stress, TNF-alpha and FAAs, is also associated with NAFLD progression. Increased JNK promotes cytokine production and initiation of HCC.
Sodium transport across the tight epithelia of Na+ reabsorbing tissues such as the distal part of the kidney nephron and colon is the major factor determining total-body Na+ levels, and thus, long-term blood pressure. Aldosterone plays a major role in sodium and potassium metabolism by binding to epithelial mineralocorticoid receptors (MR) in the renal collecting duct cells localized in the distal nephron, promoting sodium resorption and potassium excretion. Aldosterone enters a target cell and binds MR, which translocates into the nucleus and regulates gene transcription. Activation of MR leads to increased expression of Sgk-1, which phosphorylates Nedd4-2, an ubiquitin-ligase which targets ENAC to proteosomal degradation. Phosphorylated Nedd4-2 dissociates from ENAC, increasing its apical membrane abundance. Activation of MR also leads to increased expression of Na+/K+-ATPase, thus causing a net increase in sodium uptake from the renal filtrate. The specificity of MR for aldosterone is provided by 11beta-HSD2 by the rapid conversion of cortisol to cortisone in renal cortical collecting duct cells. Recently, besides genomic effects mediated by activated MR, rapid aldosterone actions that are independent of translation and transcription have been documented.
Phosphatidylinositol-5-phosphate (PI5P) may modulate PI3K/AKT signaling in several ways. PI5P is used as a substrate for production of phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2 (Rameh et al. 1997, Clarke et al. 2008, Clarke et al. 2010, Clarke and Irvine 2013, Clarke et al. 2015), which serves as a substrate for activated PI3K, resulting in the production of PIP3 (Mandelker et al. 2009, Burke et al. 2011). The majority of PI(4,5)P2 in the cell, however, is produced from the phosphatidylinositol-4-phosphate (PI4P) substrate (Zhang et al. 1997, Di Paolo et al. 2002, Oude Weernink et al. 2004, Halstead et al. 2006, Oude Weernink et al. 2007). PIP3 is necessary for the activating phosphorylation of AKT. AKT1 can be deactivated by the protein phosphatase 2A (PP2A) complex that contains a regulatory subunit B56-beta (PPP2R5B) or B56-gamma (PPP2R5C). PI5P inhibits AKT1 dephosphorylation by PP2A through an unknown mechanism (Ramel et al. 2009). Increased PI5P levels correlate with inhibitory phosphorylation(s) of the PP2A complex. MAPK1 (ERK2) and MAPK3 (ERK1) are involved in inhibitory phosphorylation of PP2A, in a process that involves IER3 (IEX-1) (Letourneux et al. 2006, Rocher et al. 2007). It is uncertain, however, whether PI5P is in any way involved in ERK-mediated phosphorylation of PP2A or if it regulates another PP2A kinase
IRS is one of the mediators of insulin signalling events. It is activated by phosphorylation and triggers a cascade of events involving PI3K, SOS, RAF and the MAP kinases. The proteins mentioned under IRS are examples of IRS family members acting as indicated. More family members are to be confirmed and added in the future.\r\n\r\nUsing receptor mutagenesis studies it is known that IRS1 via its PTB domain binds to the insulin receptor at the juxtamembrane region at tyrosine 972. The interaction is further stabilized by the PH domain of IRS1 which interacts with the phospholipids of the plasma membrane. This allows the receptor to phosphorylate IRS1 on up to 13 of its tyrosine residues. Once phosphorylated the IRS1 falls away from the receptor. Now in a tyrosine phosphorylated and hence activated state other proteins can interact with the IRS proteins
Now with the complete receptor-ligand dissociation and subsequent degradation of insulin in the endosomal lumen, the endosomally associated protein tyrosine phosphatases (PTPs) complete the receptor dephosphorylation. So too are all the receptor substrates dephosphorylated leading to the collapse of the signalling complexes and signal attenuation
Autophosphorylation of the insulin receptor triggers a series of signalling events, mediated by SHC or IRS, and resulting in activation of the Ras/RAF and MAP kinase cascades. A second effect of the autophosphorylation of the insulin receptor is its internalisation into an endosome, which downregulates its signalling activity
Insulin binding to its receptor results in receptor autophosphorylation on tyrosine residues and the tyrosine phosphorylation of insulin receptor substrates (e.g. IRS and Shc) by the insulin receptor tyrosine kinase. This allows association of IRSs with downstream effectors such as PI-3K via its Src homology 2 (SH2) domains leading to end point events such as Glut4 (Slc2a4) translocation. Shc when tyrosine phosphorylated associates with Grb2 and can thus activate the Ras/MAPK pathway independent of the IRSs.
Signal transduction by the insulin receptor is not limited to its activation at the cell surface. The activated ligand-receptor complex initially at the cell surface, is internalised into endosomes itself a process which is dependent on tyrosine autophosphorylation. Endocytosis of activated receptors has the dual effect of concentrating receptors within endosomes and allows the insulin receptor tyrosine kinase to phosphorylate substrates that are spatially distinct from those accessible at the plasma membrane. Acidification of the endosomal lumen, due to the presence of proton pumps, results in dissociation of insulin from its receptor. (The endosome constitutes the major site of insulin degradation). This loss of the ligand-receptor complex attenuates any further insulin-driven receptor re-phosphorylation events and leads to receptor dephosphorylation by extra-lumenal endosomally-associated protein tyrosine phosphatases (PTPs). The identity of these PTPs is not clearly established yet
Triggered by acidification of the endosome, insulin dissociates from the receptor and is degraded. The receptor is dephosphorylated and re-integrated into the plasma membrane, ready to be activated again by the binding of insulin molecules
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, two hybrid
association, direct interaction, physical, physical association
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, two hybrid
association, direct interaction, physical, physical association
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, two hybrid
association, direct interaction, physical, physical association
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, two hybrid
association, direct interaction, physical, physical association