spacer
Collapse Statistics
241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update:
11 Mar, 2019
last maintenance update:
01 Sep, 2023

spacer

CHEBI:16337

Name phosphatidic acidC00416
Download: mol | sdf
Synonyms01,2-diacyl-sn-glycerol 3-phosphate;
1,2-diacylglycerol 3-phosphate;
3-sn-phosphatidate;
Na;
Pa;
Phosphatidate;
Phosphatidic acid;
Phosphatidic acids;
Definition A derivative of glycerol in which one hydroxy group, commonly but not necessarily primary, is esterified with phosphoric acid and the other two are esterified with fatty acids.
Molecular Weight
(Exact mass)
NA
Molecular Formula C5H7O8PR2
SMILES OP(O)(=O)OCC(COC([*])=O)OC([*])=O
InChI InChI=1S/C5H11O8P/c6-1-3(7)5(9)4(8)2-13-14(10,11)12/h1,3-5,7-9H,2H2,(H2,10,11,12)/t3-,4-,5+/m1/s1
InChI Key PPQRONHOSHZGFQ-WDCZJNDASA-N
Crosslinking annotations KEGG:C00416 | ChEBI:16337 | LIPIDMAPS:LMGP10010000 | LIPIDMAPS:LMGP10050042 | LIPIDMAPS:LMGP10050043 | LIPIDMAPS:LMGP10050044 | PubChem:3706 |

Pathway ID Pathway Name Pathway Description (KEGG)
map00561Glycerolipid metabolismNA
map00564Glycerophospholipid metabolismNA
map01100Metabolic pathwaysNA
map01110Biosynthesis of secondary metabolitesNA
map04024cAMP signaling pathwaycAMP is one of the most common and universal second messengers, and its formation is promoted by adenylyl cyclase (AC) activation after ligation of G protein-coupled receptors (GPCRs) by ligands including hormones, neurotransmitters, and other signaling molecules. cAMP regulates pivotal physiologic processes including metabolism, secretion, calcium homeostasis, muscle contraction, cell fate, and gene transcription. cAMP acts directly on three main targets: protein kinase A (PKA), the exchange protein activated by cAMP (Epac), and cyclic nucleotide-gated ion channels (CNGCs). PKA modulates, via phosphorylation, a number of cellular substrates, including transcription factors, ion channels, transporters, exchangers, intracellular Ca2+ -handling proteins, and the contractile machinery. Epac proteins function as guanine nucleotide exchange factors (GEFs) for both Rap1 and Rap2. Various effector proteins, including adaptor proteins implicated in modulation of the actin cytoskeleton, regulators of G proteins of the Rho family, and phospholipases, relay signaling downstream from Rap.
map04070Phosphatidylinositol signaling systemNA
map04072Phospholipase D signaling pathwayPhospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). The PLD-produced PA activates signaling proteins and acts as a node within the membrane to which signaling proteins translocate. Several signaling proteins, including Raf-1 and mTOR, directly bind PA to mediate translocation or activation, respectively.
map04666Fc gamma R-mediated phagocytosisPhagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes.
map04912GnRH signaling pathwayGonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early genes.
map04975Fat digestion and absorptionFat is an important energy source from food. More than 95% of dietary fat is long-chain triacylglycerols (TAG), the remaining being phospholipids (4.5%) and sterols. In the small intestine lumen, dietary TAG is hydrolyzed to fatty acids (FA) and monoacylglycerols (MAG) by pancreatic lipase. These products are then emulsified with the help of phospholipids (PL) and bile acids (BA) present in bile to form micelles. Free FAs and MAGs are taken up by the enterocyte where they are rapidly resynthesized in endoplasmic reticulum (ER) to form TAG. PLs from the diet as well as bile - mainly LPA - too are absorbed by the enterocyte and are acylated to form phosphatidic acid (PA), which is also converted into TAG. Absorbed cholesterol (CL) is acylated to cholesterol esters (CE). Within the ER, TAG joins CE and apolipoprotein B (ApoB) to form chylomicrons that enter circulation through the lymph.
map05200Pathways in cancerNA
map05212Pancreatic cancerInfiltrating ductal adenocarcinoma is the most common malignancy of the pancreas. When most investigators use the term 'pancreatic cancer' they are referring to pancreatic ductal adenocarcinoma (PDA). Normal duct epithelium progresses to infiltrating cancer through a series of histologically defined precursors (PanINs). The overexpression of HER-2/neu and activating point mutations in the K-ras gene occur early, inactivation of the p16 gene at an intermediate stage, and the inactivation of p53, SMAD4, and BRCA2 occur relatively late. Activated K-ras engages multiple effector pathways. Although EGF receptors are conventionally regarded as upstream activators of RAS proteins, they can also act as RAS signal transducers via RAS-induced autocrine activation of the EGFR family ligands. Moreover, PDA shows extensive genomic instability and aneuploidy. Telomere attrition and mutations in p53 and BRCA2 are likely to contribute to these phenotypes. Inactivation of the SMAD4 tumour suppressor gene leads to loss of the inhibitory influence of the transforming growth factor-beta signalling pathway.
map05231Choline metabolism in cancerAbnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, oncogenic signalling via pathways such as the RAS and PI3K-AKT pathways, and transcription factors associated with oncogenesis such as hypoxia-inducible factor 1 (HIF1) mediate overexpression and activation of choline cycle enzymes, which causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These products of choline phospholipid metabolism, such as phosphocholine (PCho), diacylglycerol (DAG) and phosphatidic acid, may function as second messengers that are essential for the mitogenic activity of growth factors, particularly in the activation of the ras-raf-1-MAPK cascade and protein kinase C pathway.