241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm Nucleus Cell membrane Note=The phosphorylated form showslocalization to cytoplasm and cell membrane The MEMO1-RHOA-DIAPH1signaling pathway controls localization of the phosphorylated formto the cell membrane
Function (UniProt annotation)
Constitutively active protein kinase that acts as anegative regulator in the hormonal control of glucose homeostasis,Wnt signaling and regulation of transcription factors andmicrotubules, by phosphorylating and inactivating glycogensynthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1,DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1 Requiresprimed phosphorylation of the majority of its substrates Inskeletal muscle, contributes to insulin regulation of glycogensynthesis by phosphorylating and inhibiting GYS1 activity andhence glycogen synthesis May also mediate the development ofinsulin resistance by regulating activation of transcriptionfactors Regulates protein synthesis by controlling the activityof initiation factor 2B (EIF2BE/EIF2B5) in the same manner asglycogen synthase In Wnt signaling, GSK3B forms a multimericcomplex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylatesthe N-terminus of CTNNB1 leading to its degradation mediated byubiquitin/proteasomes Phosphorylates JUN at sites proximal to itsDNA-binding domain, thereby reducing its affinity for DNAPhosphorylates NFATC1/NFATC on conserved serine residues promotingNFATC1/NFATC nuclear export, shutting off NFATC1/NFATC generegulation, and thereby opposing the action of calcineurinPhosphorylates MAPT/TAU on 'Thr-548', decreasing significantlyMAPT/TAU ability to bind and stabilize microtubules MAPT/TAU isthe principal component of neurofibrillary tangles in Alzheimerdisease Plays an important role in ERBB2-dependent stabilizationof microtubules at the cell cortex Phosphorylates MACF1,inhibiting its binding to microtubules which is critical for itsrole in bulge stem cell migration and skin wound repair Probablyregulates NF-kappa-B (NFKB1) at the transcriptional level and isrequired for the NF-kappa-B-mediated anti-apoptotic response toTNF-alpha (TNF/TNFA) Negatively regulates replication inpancreatic beta-cells, resulting in apoptosis, loss of beta-cellsand diabetes Through phosphorylation of the anti-apoptoticprotein MCL1, may control cell apoptosis in response to growthfactors deprivation Phosphorylates MUC1 in breast cancer cells,decreasing the interaction of MUC1 with CTNNB1/beta-catenin Isnecessary for the establishment of neuronal polarity and axonoutgrowth Phosphorylates MARK2, leading to inhibit its activityPhosphorylates SIK1 at 'Thr-182', leading to sustain its activityPhosphorylates ZC3HAV1 which enhances its antiviral activityPhosphorylates SNAI1, leading to its BTRC-triggered ubiquitinationand proteasomal degradation Phosphorylates SFPQ at 'Thr-687' uponT-cell activation Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59'and stabilizes it by protecting it from proteasomal degradationRegulates the circadian clock via phosphorylation of the majorclock components including ARNTL/BMAL1, CLOCK and PER2Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomaldegradation Phosphorylates ARNTL/BMAL1 at 'Ser-17' and 'Ser-21'and primes it for ubiquitination and proteasomal degradationPhosphorylates OGT at 'Ser-3' or 'Ser-4' which positivelyregulates its activity Phosphorylates MYCN in neuroblastoma cellswhich may promote its degradation (PubMed:24391509)
Catalytic Activity (UniProt annotation)
ATP + [tau protein] = ADP + [tau protein]phosphate ATP + a protein = ADP + a phosphoprotein
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. EGFR also serves as a stimulus for cancer growth. EGFR gene mutations and protein overexpression, both of which activate down- stream pathways, are associated with cancers, especially lung cancer. Several tyrosine kinase inhibitor (TKI) therapies against EGFR are currently administered and are initially effective in cancer patients who have EGFR mutations or aberrant activation of EGFR. However, the development of TKI resistance is common and results in the recurrence of tumors. Studies over the last decade have identified mechanisms that drive resistance to EGFR TKI treatment. Most outstanding mechanisms are: the secondary EGFR mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, etc.
The ErbB family of receptor tyrosine kinases (RTKs) couples binding of extracellular growth factor ligands to intracellular signaling pathways regulating diverse biologic responses, including proliferation, differentiation, cell motility, and survival. Ligand binding to the four closely related members of this RTK family -epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER1), ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4)-induces the formation of receptor homo- and heterodimers and the activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine residues (pY) within the cytoplasmic tail. Signaling effectors containing binding pockets for pY-containing peptides are recruited to activated receptors and induce the various signaling pathways. The Shc- and/or Grb2-activated mitogen-activated protein kinase (MAPK) pathway is a common target downstream of all ErbB receptors. Similarly, the phosphatidylinositol-3-kinase (PI-3K) pathway is directly or indirectly activated by most ErbBs. Several cytoplasmic docking proteins appear to be recruited by specific ErbB receptors and less exploited by others. These include the adaptors Crk, Nck, the phospholipase C gamma (PLCgamma), the intracellular tyrosine kinase Src, or the Cbl E3 ubiquitin protein ligase.
Inflammatory immune response requires the recruitment of leukocytes to the site of inflammation upon foreign insult. Chemokines are small chemoattractant peptides that provide directional cues for the cell trafficking and thus are vital for protective host response. In addition, chemokines regulate plethora of biological processes of hematopoietic cells to lead cellular activation, differentiation and survival.The chemokine signal is transduced by chemokine receptors (G-protein coupled receptors) expressed on the immune cells. After receptor activation, the alpha- and beta-gamma-subunits of G protein dissociate to activate diverse downstream pathways resulting in cellular polarization and actin reorganization. Various members of small GTPases are involved in this process. Induction of nitric oxide and production of reactive oxygen species are as well regulated by chemokine signal via calcium mobilization and diacylglycerol production.
Mitotic cell cycle progression is accomplished through a reproducible sequence of events, DNA replication (S phase) and mitosis (M phase) separated temporally by gaps known as G1 and G2 phases. Cyclin-dependent kinases (CDKs) are key regulatory enzymes, each consisting of a catalytic CDK subunit and an activating cyclin subunit. CDKs regulate the cell's progression through the phases of the cell cycle by modulating the activity of key substrates. Downstream targets of CDKs include transcription factor E2F and its regulator Rb. Precise activation and inactivation of CDKs at specific points in the cell cycle are required for orderly cell division. Cyclin-CDK inhibitors (CKIs), such as p16Ink4a, p15Ink4b, p27Kip1, and p21Cip1, are involved in the negative regulation of CDK activities, thus providing a pathway through which the cell cycle is negatively regulated.Eukaryotic cells respond to DNA damage by activating signaling pathways that promote cell cycle arrest and DNA repair. In response to DNA damage, the checkpoint kinase ATM phosphorylates and activates Chk2, which in turn directly phosphorylates and activates p53 tumor suppressor protein. p53 and its transcriptional targets play an important role in both G1 and G2 checkpoints. ATR-Chk1-mediated protein degradation of Cdc25A protein phosphatase is also a mechanism conferring intra-S-phase checkpoint activation.
The mammalian (mechanistic) target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase, which exists in two complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 contains mTOR, Raptor, PRAS40, Deptor, mLST8, Tel2 and Tti1. mTORC1 is activated by the presence of growth factors, amino acids, energy status, stress and oxygen levels to regulate several biological processes, including lipid metabolism, autophagy, protein synthesis and ribosome biogenesis. On the other hand, mTORC2, which consists of mTOR, mSin1, Rictor, Protor, Deptor, mLST8, Tel2 and Tti1, responds to growth factors and controls cytoskeletal organization, metabolism and survival.
The phosphatidylinositol 3' -kinase(PI3K)-Akt signaling pathway is activated by many types of cellular stimuli or toxic insults and regulates fundamental cellular functions such as transcription, translation, proliferation, growth, and survival. The binding of growth factors to their receptor tyrosine kinase (RTK) or G protein-coupled receptors (GPCR) stimulates class Ia and Ib PI3K isoforms, respectively. PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) at the cell membrane. PIP3 in turn serves as a second messenger that helps to activate Akt. Once active, Akt can control key cellular processes by phosphorylating substrates involved in apoptosis, protein synthesis, metabolism, and cell cycle.
Wnt proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. There are at least three different Wnt pathways: the canonical pathway, the planar cell polarity (PCP) pathway and the Wnt/Ca2+ pathway. In the canonical Wnt pathway, the major effect of Wnt ligand binding to its receptor is the stabilization of cytoplasmic beta-catenin through inhibition of the bea-catenin degradation complex. Beta-catenin is then free to enter the nucleus and activate Wnt-regulated genes through its interaction with TCF (T-cell factor) family transcription factors and concomitant recruitment of coactivators. Planar cell polarity (PCP) signaling leads to the activation of the small GTPases RHOA (RAS homologue gene-family member A) and RAC1, which activate the stress kinase JNK (Jun N-terminal kinase) and ROCK (RHO-associated coiled-coil-containing protein kinase 1) and leads to remodelling of the cytoskeleton and changes in cell adhesion and motility. WNT-Ca2+ signalling is mediated through G proteins and phospholipases and leads to transient increases in cytoplasmic free calcium that subsequently activate the kinase PKC (protein kinase C) and CAMKII (calcium calmodulin mediated kinase II) and the phosphatase calcineurin.
The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning, stem cell maintenance and development. The primary cilium is an important center for transduction of the Hedgehog signal in vertebrates. In Hh's absence, the Ptch receptor localizes to the cilium, where it inhibits Smo activation. Gli proteins are phosphorylated by PKA, CKI and GSK3B and partially degraded into truncated Gli repressor form (GliR) that suppresses Hh target gene transcription in the nucleus. In Hh's presence, Ptch disappears from the cilium, and activated Smo contributes to the translocation of the protein complex Gli, Sufu, Kif7 to ciliary tip, where Gli dissociates from the negative regulator Sufu. The production of Gli activator form (GliA) occurs and the increased nuclear accumulation of GliA results in activation transcription of Hh target genes.
Axon guidance represents a key stage in the formation of neuronal network. Axons are guided by a variety of guidance factors, such as netrins, ephrins, Slits, and semaphorins. These guidance cues are read by growth cone receptors, and signal transduction pathways downstream of these receptors converge onto the Rho GTPases to elicit changes in cytoskeletal organization that determine which way the growth cone will turn.
Hippo signaling is an evolutionarily conserved signaling pathway that controls organ size from flies to humans. In humans and mice, the pathway consists of the MST1 and MST2 kinases, their cofactor Salvador and LATS1 and LATS2. In response to high cell densities, activated LATS1/2 phosphorylates the transcriptional coactivators YAP and TAZ, promoting its cytoplasmic localization, leading to cell apoptosis and restricting organ size overgrowth. When the Hippo pathway is inactivated at low cell density, YAP/TAZ translocates into the nucleus to bind to the transcription enhancer factor (TEAD/TEF) family of transcriptional factors to promote cell growth and proliferation. YAP/TAZ also interacts with other transcriptional factors or signaling molecules, by which Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-beta and Wnt growth factors.
Cell-matrix adhesions play essential roles in important biological processes including cell motility, cell proliferation, cell differentiation, regulation of gene expression and cell survival. At the cell-extracellular matrix contact points, specialized structures are formed and termed focal adhesions, where bundles of actin filaments are anchored to transmembrane receptors of the integrin family through a multi-molecular complex of junctional plaque proteins. Some of the constituents of focal adhesions participate in the structural link between membrane receptors and the actin cytoskeleton, while others are signalling molecules, including different protein kinases and phosphatases, their substrates, and various adapter proteins. Integrin signaling is dependent upon the non-receptor tyrosine kinase activities of the FAK and src proteins as well as the adaptor protein functions of FAK, src and Shc to initiate downstream signaling events. These signalling events culminate in reorganization of the actin cytoskeleton; a prerequisite for changes in cell shape and motility, and gene expression. Similar morphological alterations and modulation of gene expression are initiated by the binding of growth factors to their respective receptors, emphasizing the considerable crosstalk between adhesion- and growth factor-mediated signalling.
Pluripotent stem cells (PSCs) are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. The types of PSCs known to date include embryonic stem (ES) and induced pluripotent stem (iPS) cells. ES cells are derived from the inner cell mass (ICM) of blastocyst-stage embryos. iPS cells are generated by reprogramming somatic cells back to pluripotent state with defined reprogramming factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors). PSCs including ES cells and iPS cells are categorized into two groups by their morphology, gene expression profile and external signal dependence. Conventional mouse-type ES/iPS cells are called 'naive state' cells. They are mainly maintained under the control of LIF and BMP signaling. On the other hand, human-type ES/iPS cells, which are in need of Activin and FGF signaling, are termed 'primed state'. However, these signaling pathways converge towards the activation of a core transcriptional network that is similar in both groups and involves OCt4, Nanog and Sox2. The three transcription factors and their downstream target genes coordinately promote self-renewal and pluripotency.
The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in both acute and chronic inflammatory responses. IL-17A, the hallmark cytokine of the newly defined T helper 17 (TH17) cell subset, has important roles in protecting the host against extracellular pathogens, but also promotes inflammatory pathology in autoimmune disease, whereas IL-17F is mainly involved in mucosal host defense mechanisms. IL-17E (IL-25) is an amplifier of Th2 immune responses. IL-17C has biological functions similar to those of IL-17A. The functions of IL-17B and IL-17D remain largely elusive. The IL-17 family signals via their correspondent receptors and activates downstream pathways that include NF-kappaB, MAPKs and C/EBPs to induce the expression of antimicrobial peptides, cytokines and chemokines. The receptor proximal adaptor Act1 (an NF-kappaB activator 1) is considered as the master mediator in IL-17A signaling. It is likely that Act1 is a common signal adaptor also shared by other members mediated signalings in this family.
Activation of T lymphocytes is a key event for an efficient response of the immune system. It requires the involvement of the T-cell receptor (TCR) as well as costimulatory molecules such as CD28. Engagement of these receptors through the interaction with a foreign antigen associated with major histocompatibility complex molecules and CD28 counter-receptors B7.1/B7.2, respectively, results in a series of signaling cascades. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions, leading to T-cell proliferation, cytokine production and differentiation into effector cells.
B cells are an important component of adaptive immunity. They produce and secrete millions of different antibody molecules, each of which recognizes a different (foreign) antigen. The B cell receptor (BCR) is an integral membrane protein complex that is composed of two immunoglobulin (Ig) heavy chains, two Ig light chains and two heterodimers of Ig-alpha and Ig-beta. After BCR ligation by antigen, three main protein tyrosine kinases (PTKs) -the SRC-family kinase LYN, SYK and the TEC-family kinase BTK- are activated. Phosphatidylinositol 3-kinase (PI3K) and phospholipase C-gamma 2 (PLC-gamma 2) are important downstream effectors of BCR signalling. This signalling ultimately results in the expression of immediate early genes that further activate the expression of other genes involved in B cell proliferation, differentiation and Ig production as well as other processes.
Neurotrophins are a family of trophic factors involved in differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Neurotrophins exert their functions through engagement of Trk tyrosine kinase receptors or p75 neurotrophin receptor (p75NTR). Neurotrophin/Trk signaling is regulated by connecting a variety of intracellular signaling cascades, which include MAPK pathway, PI-3 kinase pathway, and PLC pathway, transmitting positive signals like enhanced survival and growth. On the other hand, p75NTR transmits both positive and nagative signals. These signals play an important role for neural development and additional higher-order activities such as learning and memory.
Dopamine (DA) is an important and prototypical slow neurotransmitter in the mammalian brain, where it controls a variety of functions including locomotor activity, motivation and reward, learning and memory, and endocrine regulation. Once released from presynaptic axonal terminals, DA interacts with at least five receptor subtypes in the central nervous system (CNS), which have been divided into two groups: the D1-like receptors (D1Rs), comprising D1 and D5 receptors, both positively coupled to adenylyl cyclase and cAMP production, and the D2-like receptors (D2Rs), comprising D2, D3, and D4 receptors, whose activation results in inhibition of adenylyl cyclase and suppression of cAMP production. In addition, D1Rs and D2Rs modulate intracellular Ca2+ levels and a number of Ca2+ -dependent intracellular signaling processes. Through diverse cAMP- and Ca2+-dependent and - independent mechanisms, DA influences neuronal activity, synaptic plasticity, and behavior. Presynaptically localized D2Rs regulate synthesis and release of DA as the main autoreceptor of the dopaminergic system.
Insulin binding to its receptor results in the tyrosine phosphorylation of insulin receptor substrates (IRS) by the insulin receptor tyrosine kinase (INSR). This allows association of IRSs with the regulatory subunit of phosphoinositide 3-kinase (PI3K). PI3K activates 3-phosphoinositide-dependent protein kinase 1 (PDK1), which activates Akt, a serine kinase. Akt in turn deactivates glycogen synthase kinase 3 (GSK-3), leading to activation of glycogen synthase (GYS) and thus glycogen synthesis. Activation of Akt also results in the translocation of GLUT4 vesicles from their intracellular pool to the plasma membrane, where they allow uptake of glucose into the cell. Akt also leads to mTOR-mediated activation of protein synthesis by eIF4 and p70S6K. The translocation of GLUT4 protein is also elicited through the CAP/Cbl/TC10 pathway, once Cbl is phosphorylated by INSR.Other signal transduction proteins interact with IRS including GRB2. GRB2 is part of the cascade including SOS, RAS, RAF and MEK that leads to activation of mitogen-activated protein kinase (MAPK) and mitogenic responses in the form of gene transcription. SHC is another substrate of INSR. When tyrosine phosphorylated, SHC associates with GRB2 and can thus activate the RAS/MAPK pathway independently of IRS-1.
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortic peptides. MC1R activates the cyclic AMP (cAMP) response-element binding protein (CREB). Increased expression of MITF and its activation by phosphorylation (P) stimulate the transcription of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT), which produce melanin. Melanin synthesis takes place within specialized intracellular organelles named melanosomes. Melanin-containing melanosomes then move from the perinuclear region to the dendrite tips and are transferred to keratinocytes by a still not well-characterized mechanism.
Prolactin (PRL) is a polypeptide hormone known to be involved in a wide range of biological functions including osmoregulation, lactation, reproduction, growth and development, endocrinology and metabolism, brain and behavior, and immunomodulation. PRL mediates its action through PRLR, a transmembrane protein of the hematopoietin cytokine receptor superfamily. At the protein level, the long PRLR isoform (long-R) and several short PRLR isoforms (short-R) have been detected. Acting through the long-R, PRL activates many signaling cascades including Jak2/Stat, the major cascade, Src kinase, phosphatidylinositol-3-kinase (PI3K)/AKT, and mitogen-activated protein kinase (MAPK) pathways. PRL cannot activate Jak2/Stat5 through the short-R, but can activate pathways including MAPK and PI3K pathways.
The thyroid hormones (THs) are important regulators of growth, development and metabolism. The action of TH is mainly mediated by T3 (3,5,3'-triiodo-L-thyronine). Thyroid hormones, L-thyroxine (T4) and T3 enter the cell through transporter proteins. Although the major form of TH in the blood is T4, it is converted to the more active hormone T3 within cells. T3 binds to nuclear thyroid hormone receptors (TRs), which functions as a ligand-dependent transcription factor and controls the expression of target genes (genomic action). Nongenomic mechanisms of action is initiated at the integrin receptor. The plasma membrane alpha(v)beta(3)-integrin has distinct binding sites for T3 and T4. One binding site binds only T3 and activates the phosphatidylinositol 3-kinase (PI3K) pathway. The other binding site binds both T3 and T4 and activates the ERK1/2 MAP kinase pathway.
Insulin resistance is a condition where cells become resistant to the effects of insulin. It is often found in people with health disorders, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. In this diagram multiple mechanisms underlying insulin resistance are shown: (a) increased phosphorylation of IRS (insulin receptor substrate) protein through serine/threonine kinases, such as JNK1 and IKKB, and protein kinase C, (b) increased IRS-1 proteasome degradation via mTOR signaling pathway, (c) decreased activation of signaling molecules including PI3K and AKT, (d) increase in activity of phosphatases including PTPs, PTEN, and PP2A. Regulatory actions such as oxidative stress, mitochondrial dysfunction, accumulation of intracellular lipid derivatives (diacylglycrol and ceramides), and inflammation (via IL-6 and TNFA) contribute to these mechanisms. Consequently, insulin resistance causes reduced GLUT4 translocation, resulting in glucose takeup and glycogen synthesis in skeletal muscle as well as increased hepatic gluconeogenesis and decreased glycogen synthesis in liver. At the bottom of the diagram, interplay between O-GlcNAcylation and serine/threonine phosphorylation is shown. Studies suggested that elevated O-GlcNAc level was correlated to high glucose-induced insulin resistance. Donor UDP-GlcNAc is induced through hexosamine biosynthesis pathway and added to proteins by O-GlcNAc transferase. Elevation of O-GlcNAc modification alters phosphorylation and function of key insulin signaling proteins including IRS-1, PI3K, PDK1, Akt and other transcription factor and cofactors, resulting in the attenuation of insulin signaling cascade.
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum ranging from simple steatosis to more severe steatohepatitis with hepatic inflammation and fibrosis, known as nonalcoholic steatohepatitis (NASH). NASH may further lead to cirrhosis and hepatocellular carcinoma (HCC). This map shows a stage-dependent progression of NAFLD. In the first stage of NAFLD, excess lipid accumulation has been demonstrated. The main cause is the induction of insulin resistance, which leads to a defect in insulin suppression of free fatty acids (FAAs) disposal. In addition, two transcription factors, SREBP-1c and PPAR-alpha, activate key enzymes of lipogenesis and increase the synthesis of FAAs in liver. In the second stage, as a consequence of the progression to NASH, the production of reactive oxygen species (ROS) is enhanced due to oxidation stress through mitochondrial beta-oxidation of fatty acids and endoplamic reticulum (ER) stress, leading to lipid peroxidation. The lipid peroxidation can further cause the production of cytokines (Fas ligand, TNF-alpha, IL-8 and TGF), promoting cell death, inflammation and fibrosis. The activation of JNK, which is induced by ER stress, TNF-alpha and FAAs, is also associated with NAFLD progression. Increased JNK promotes cytokine production and initiation of HCC.
Cushing syndrome (CS) is a rare disorder resulting from prolonged exposure to excess glucocorticoids via exogenous and endogenous sources. The typical clinical features of CS are related to hypercortisolism and include accumulation of central fat, moon facies, neuromuscular weakness, osteoporosis or bone fractures, metabolic complications, and mood changes. Traditionally, endogenous CS is classified as adrenocorticotropic hormone (ACTH)-dependent (about 80%) or ACTH- independent (about 20%). Among ACTH-dependent forms, pituitary corticotroph adenoma (Cushing's disease) is most common. Most pituitary tumors are sporadic, resulting from monoclonal expansion of a single mutated cell. Recently recurrent activating somatic driver mutations in the ubiquitin-specific protease 8 gene (USP8) were identified in almost half of corticotroph adenoma. Germline mutations in MEN1 (encoding menin), AIP (encoding aryl-hydrocarbon receptor-interacting protein), PRKAR1A (encoding cAMP-dependent protein kinase type I alpha regulatory subunit) and CDKN1B (encoding cyclin-dependent kinase inhibitor 1B; also known as p27 Kip1) have been identified in familial forms of pituitary adenomas. However, the frequency of familial pituitary adenomas is less than 5% in patients with pituitary adenomas. Among ACTH-independent CS, adrenal adenoma is most common. Rare adrenal causes of CS include primary bilateral macronodular adrenal hyperplasia (BMAH) or primary pigmented nodular adrenocortical disease (PPNAD).
Alzheimer disease (AD) is a chronic disorder that slowly destroys neurons and causes serious cognitive disability. AD is associated with senile plaques and neurofibrillary tangles (NFTs). Amyloid-beta (Abeta), a major component of senile plaques, has various pathological effects on cell and organelle function. The extracellular Abeta oligomers may activate caspases through activation of cell surface death receptors. Alternatively, intracellular Abeta may contribute to pathology by facilitating tau hyper-phosphorylation, disrupting mitochondria function, and triggering calcium dysfunction. To date genetic studies have revealed four genes that may be linked to autosomal dominant or familial early onset AD (FAD). These four genes include: amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2) and apolipoprotein E (ApoE). All mutations associated with APP and PS proteins can lead to an increase in the production of Abeta peptides, specfically the more amyloidogenic form, Abeta42. FAD-linked PS1 mutation downregulates the unfolded protein response and leads to vulnerability to ER stress.
Hepatitis C virus (HCV) is a major cause of chronic liver disease. The HCV employ several strategies to perturb host cell immunity. After invasion, HCV RNA genome functions directly as an mRNA in the cytoplasm of the host cell and forms membrane-associated replication complexes along with non-structural proteins. Viral RNA can trigger the RIG-I pathway and interferon production during this process. Translated HCV protein products regulate immune response to inhibit the action of interferon. HCV core and NS5A proteins appear to be the most important molecules with regulatory functions that modulate transcription, cellular proliferation, and apoptosis.
Measles virus (MV) is highly contagious virus that leads infant death worldwide. Humans are the unique natural reservoir for this virus. It causes severe immunosuppression favouring secondary bacterial infections. Several MV proteins have been suggested to disturb host immunity. After infection of host lymphoid cells via SLAM, MV inhibits cytokine response by direct interference with host signaling systems. Three proteins (P, V, and C) associate with Jak/STAT proteins in interferon-triggered pathway and other important proteins related to apoptosis. Interaction between MV and host brings about the shift towards a Th2 response by decreasing IL-12 production and induces lymphopenia by suppressing cell proliferation.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Influenza is a contagious respiratory disease caused by influenza virus infection. Influenza A virus is responsible for both annual seasonal epidemics and periodic worldwide pandemics. Novel strains that cause pandemics arise from avian influenza virus by genetic reassortment among influenza viruses and two surface glycoproteins HA and NA form the basis of serologically distinct virus types. The innate immune system recognizes invaded virus through multiple mechanisms. Viral non-structural NS1 protein is a multifunctional virulence factor that interfere IFN-mediated antiviral response. It inhibits IFN production by blocking activation of transcription factors such as NF-kappa B, IRF3 and AP1. NS1 further inhibits the activation of IFN-induced antiviral genes. PB1-F2 protein is another virulence factor that induce apoptosis of infected cells, which results in life-threatening bronchiolitis.
Human papillomavirus (HPV) is a non-enveloped, double-stranded DNA virus. HPV infect mucoal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. All types of HPV share a common genomic structure and encode eight proteins: E1, E2, E4, E5, E6, and E7 (early) and L1 and L2 (late). It has been demonstrated that E1 and E2 are involved in viral transcription and replication. The functions of the E4 protein is not yet fully understood. E5, E6, and E7 act as oncoproteins. E5 inhibits the V-ATPase, prolonging EGFR signaling and thereby promoting cell proliferation. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways. Among these pathways, PI3K/Akt signalling cascade plays a very important role in HPV-induced carcinogenesis. The L1 and L2 proteins form icosahedral capsids for progeny virion generation.
Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, SRF, and NFAT.
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus, and is associated with the pathogenesis of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). Like all other herpesviruses, KSHV displays two modes of life cycle, latency and lytic replication, which are characterized by the patterns of viral gene expression. Genes expressed in latency (LANA, v-cyclin, v-FLIP, Kaposins A, B and C and viral miRNAs) are mainly thought to facilitate the establishment of life long latency in its host and survival against the host innate, and adaptive immune surveillance mechanisms. Among the viral proteins shown to be expressed during lytic replication are potent signaling molecules such as vGPCR, vIL6, vIRFs, vCCLs, K1 and K15, which have been implicated experimentally in the angiogenic and inflammatory phenotype observed in KS lesions. Several of these latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of severe human malignancies.
Colorectal cancer (CRC) is the second largest cause of cancer-related deaths in Western countries. CRC arises from the colorectal epithelium as a result of the accumulation of genetic alterations in defined oncogenes and tumour suppressor genes (TSG). Two major mechanisms of genomic instability have been identified in sporadic CRC progression. The first, known as chromosomal instability (CIN), results from a series of genetic changes that involve the activation of oncogenes such as K-ras and inactivation of TSG such as p53, DCC/Smad4, and APC. The second, known as microsatellite instability (MSI), results from inactivation of the DNA mismatch repair genes MLH1 and/or MSH2 by hypermethylation of their promoter, and secondary mutation of genes with coding microsatellites, such as transforming growth factor receptor II (TGF-RII) and BAX. Hereditary syndromes have germline mutations in specific genes (mutation in the tumour suppressor gene APC on chromosome 5q in FAP, mutated DNA mismatch repair genes in HNPCC).
Endometrial cancer (EC) is the most common gynaecological malignancy and the fourth most common malignancy in women in the developed world after breast, colorectal and lung cancer. Two types of endometrial carcinoma are distinguished with respect to biology and clinical course. Type-I carcinoma is related to hyperestrogenism by association with endometrial hyperplasia, frequent expression of estrogen and progesterone receptors and younger age, whereas type-II carcinoma is unrelated to estrogen, associated with atrophic endometrium, frequent lack of estrogen and progesterone receptors and older age. The morphologic differences in these cancers are mirrored in their molecular genetic profile with type I showing defects in DNA-mismatch repair and mutations in PTEN, K-ras, and beta-catenin, and type II showing aneuploidy, p53 mutations, and her2/neu amplification.
Prostate cancer constitutes a major health problem in Western countries. It is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. The identification of key molecular alterations in prostate-cancer cells implicates carcinogen defenses (GSTP1), growth-factor-signaling pathways (NKX3.1, PTEN, and p27), and androgens (AR) as critical determinants of the phenotype of prostate-cancer cells. Glutathione S-transferases (GSTP1) are detoxifying enzymes. Cells of prostatic intraepithelial neoplasia, devoid of GSTP1, undergo genomic damage mediated by carcinogens. NKX3.1, PTEN, and p27 regulate the growth and survival of prostate cells in the normal prostate. Inadequate levels of PTEN and NKX3.1 lead to a reduction in p27 levels and to increased proliferation and decreased apoptosis. Androgen receptor (AR) is a transcription factor that is normally activated by its androgen ligand. During androgen withdrawal therapy, the AR signal transduction pathway also could be activated by amplification of the AR gene, by AR gene mutations, or by altered activity of AR coactivators. Through these mechanisms, tumor cells lead to the emergence of androgen-independent prostate cancer.
Cancer of the skin is the most common cancer in Caucasians and basal cell carcinomas (BCC) account for 90% of all skin cancers. The vast majority of BCC cases are sporadic, though there is a rare familial syndrome basal cell nevus syndrome (BCNS, or Gorlin syndrome) that predisposes to development of BCC. In addition, there is strong epidemiological and genetic evidence that demonstrates UV exposure as a risk factor of prime importance. The development of basal cell carcinoma is associated with constitutive activation of sonic hedgehog signaling. The mutations in SMOH, PTCH1, and SHH in BCCs result in continuous activation of target genes. At a cellular level, sonic hedgehog signaling promotes cell proliferation. Mutations in TP53 are also found with high frequency (>50%) in sporadic BCC.
Breast cancer is the leading cause of cancer death among women worldwide. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. The molecular subtypes of breast cancer, which are based on the presence or absence of hormone receptors (estrogen and progesterone subtypes) and human epidermal growth factor receptor-2 (HER2), include: hormone receptor positive and HER2 negative (luminal A subtype), hormone receptor positive and HER2 positive (luminal B subtype), hormone receptor negative and HER2 positive (HER2 positive), and hormone receptor negative and HER2 negative (basal-like or triple-negative breast cancers (TNBCs)). Hormone receptor positive breast cancers are largely driven by the estrogen/ER pathway. In HER2 positive breast tumours, HER2 activates the PI3K/AKT and the RAS/RAF/MAPK pathways, and stimulate cell growth, survival and differentiation. In patients suffering from TNBC, the deregulation of various signalling pathways (Notch and Wnt/beta-catenin), EGFR protein have been confirmed. In the case of breast cancer only 8% of all cancers are hereditary, a phenomenon linked to genetic changes in BRCA1 or BRCA2. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers.
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and one of the rare human neoplasms etiologically linked to viral factors. It has been shown that, after HBV/HCV infection and alcohol or aflatoxin B1 exposure, genetic and epigenetic changes occur. The recurrent mutated genes were found to be highly enriched in multiple key driver signaling processes, including telomere maintenance, TP53, cell cycle regulation, the Wnt/beta-catenin pathway (CTNNB1 and AXIN1), the phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Recent studies using whole-exome sequencing have revealed recurrent mutations in new driver genes involved in the chromatin remodelling (ARID1A and ARID2) and the oxidative stress (NFE2L2) pathways.
Gastric cancer (GC) is one of the world's most common cancers. According to Lauren's histological classification gastric cancer is divided into two distinct histological groups - the intestinal and diffuse types. Several genetic changes have been identified in intestinal-type GC. The intestinal metaplasia is characterized by mutations in p53 gene, reduced expression of retinoic acid receptor beta (RAR-beta) and hTERT expression. Gastric adenomas furthermore display mutations in the APC gene, reduced p27 expression and cyclin E amplification. In addition, amplification and overexpression of c-ErbB2, reduced TGF-beta receptor type I (TGFBRI) expression and complete loss of p27 expression are commonly observed in more advanced GC. The main molecular changes observed in diffuse-type GCs include loss of E-cadherin function by mutations in CDH1 and amplification of MET and FGFR2F.
The beta-catenin destruction complex plays a key role in the canonical Wnt signaling pathway. In the absence of Wnt signaling, this complex controls the levels of cytoplamic beta-catenin. Beta-catenin associates with and is phosphorylated by the destruction complex. Phosphorylated beta-catenin is recognized and ubiquitinated by the SCF-beta TrCP ubiquitin ligase complex and is subsequently degraded by the proteasome (reviewed in Kimelman and Xu, 2006)
Degradation of beta-catenin is initiated following amino-terminal serine/threonine phosphorylation. Phosphorylation of B-catenin at S45 by CK1 alpha primes the subsequent sequential GSK-3-mediated phosphorylation at Thr41, Ser37 and Ser33 (Amit et al., 2002 ; Lui et al., 2002)
Following activation, AKT can phosphorylate an array of target proteins in the cytoplasm, many of which are involved in cell survival control. Phosphorylation of TSC2 feeds positively to the TOR kinase, which, in turn, contributes to AKT activation (positive feedback loop)
The ability of HSF1 to respond to cellular stresses is under negative regulation by chaperones, modulation of nucleocytoplasmic shuttling, post-translational modifications and transition from monomeric to trimeric state
CRMPs are a small family of plexinA-interacting cytosolic phosphoproteins identified as mediators of Sema3A signaling and neuronal differentiation. After Sema3A activation Plexin-A bound CRMP's undergo phosphorylation by Cdk5, GSK3beta and Fes kinases. Phosphorylation of CRMPs by these kinases blocks the ability of CRMP to bind to tubulin dimers, subsequently induces depolymerization of F-actin, and ultimately leads to growth cone collapse
Upon stimulation with WNT ligand, AXIN and GSK3beta are recruited to the plasma membrane through interaction with DVL (Tamai et al, 2004; Mao et al, 2001; reviewed in He et al, 2004). Polymerization of membrane-associated DVL and GSK3beta- and CSNK1-mediated phosphorylation of LRP5/6 establish a feed-forward mechanism for enhanced membrane recruitment of AXIN upon WNT signaling (Tamai et al, 2004; Cong et al, 2004; Zeng et al, 2005; Bilic et al, 2007). In Xenopus oocytes, but not necessarily all sytems, AXIN is present in limiting concentrations and is considered rate limiting for the assembly of the destruction complex (Lee et al, 2003; Benchabane et al, 2008; Tan et al, 2012; reviewed in MacDonald et al, 2009). The recruitment of AXIN away from the destruction complex upon WNT stimulation effectively destabilizes the destruction complex and contributes to the accumulation of free beta-catenin (Kikuchi, 1999; Lee et al, 2003). AXIN association with the destruction complex is also regulated by phosphorylation. In the active destruction complex, AXIN is phosphorylated by GSK3beta; dephosphorylation by protein phosphatase 1 (PP1) or protein phosphatase 2A (PP2A) destabilizes the interaction of AXIN with the other components of the destruction complex and promotes its disassembly (Luo et al, 2007; Willert et al, 1999; Jho et al, 1999). Free AXIN is also subject to degradation by the 26S proteasome in a manner that depends on the poly-ADP-ribosylating enzymes tankyrase 1 and 2 (Huang et al, 2009)
The B-WICH complex is a large 3 Mdalton complex containing SMARCA5 (SNF2H), BAZ1B (WSTF), ERCC6 (CSB), MYO1C (Nuclear myosin 1c), SF3B1, DEK, MYBBP1A, and DDX21 (Cavellan et al. 2006, Percipalle et al. 2006, Vintermist et al. 2001, Sarshad et al. 2013, Shen et al. 2013, reviewed in Percipalle and Farrants 2006). B-WICH is found at active rRNA genes as well as at 5S rRNA and 7SL RNA genes. B-WICH appears to remodel chromatin and recruit histone acetyltransferases that modify histones to transcriptionally active states
GSK3beta is subject to in-frame missplicing in CML stem cells resulting in the production of mutant protein that lacks the AXIN and FRAT binding domains. Cells containing this mutant GSK3beta show elevated levels of nuclear beta-catenin and enhanced TCF-dependent reporter activity (Jamieson et al, 2008; Abrahamsson et al, 2009)
S33 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear localization of the protein and enhanced WNT signaling (Groen et al, 2008; Nhieu et al, 1999; Clements et al, 2002; reviewed in Polakis, 2000). S33 mutations have been identified in cancers of the central nervous system, liver, endometrium and stomach, among others (reviewed in Polakis, 2000)
S37 mutations of beta-catenin interfere with GSK3 phosphorylation and stabilize the protein, resulting in enhanced WNT pathway signaling (Nhieu et al, 1999; Clements et al, 2002; reviewed in Polakis, 2000). S37 mutations have been identified in cancers of the brain, liver, ovary and large intestine, among others (reviewed in Polakis, 2000)
S45 mutants of beta-catenin have been identified in colorectal and hepatocellular carcinomas, soft tissue cancer and Wilms Tumors, among others (reviewed in Polakis, 2000). These mutations abolish the CK1alpha phosphorylation site of beta-catenin which acts as a critical priming site for GSK3 phosphorylation of T41( and subsequently S37 and S33) thus preventing its ubiquitin-mediated degradation (Morin et al, 1997; Amit et al, 2002)
T41 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear accumulation of the protein (Moreno-Bueno et al, 2002; Taniguchi et al, 2002; reviewed in Polakis, 2012). T41 mutations have been identified in cancers of the liver and brain, as well as in the pituitary, endometrium, large intestine and skin, among others (reviewed in Polakis, 2000; Saito-Diaz et al, 2013)
Mutations in the APC tumor suppressor gene are common in colorectal and other cancers and cluster in the central mutation cluster region (MCR) of the gene (Miyoshi et al, 1992; Nagase and Nakamura, 1993; Dihlmann et al, 1999; reviewed in Bienz and Clevers, 2000). These mutations generally result in truncated proteins that destabilize the destruction complex and result in elevated WNT pathway activation (reviewed in Polakis, 2000)
Alterations in AXIN1 have been detected in a number of different cancers including liver and colorectal cancer and medullablastoma, among others (reviewed in Salahshor and Woodgett, 2005). Missense and nonsense mutations that disrupt or remove protein-protein interaction domains are common, and AXIN variants in cancers tend to disrupt the formation of a functional destruction complex (Satoh et al, 2000; Taniguchi et al, 2002; Webster et al, 2000; Shimizu et al, 2002)
AMER1/WTX is a known component of the destruction complex and interacts directly with beta-catenin through the C-terminal half (Major et al, 2007). siRNA depletion of AMER1 in mammalian cells stabilizes cellular beta-catenin levels and increases the expression of a beta-catenin-dependent reporter gene, suggesting that AMER1 is a tumor suppressor gene (Major et al, 2007; reviewed in Huff, 2011). Consistent with this, nonsense and missense mutations that truncate AMER1 and result in loss of the beta-catenin binding region have been identified in Wilms tumor, a pediatric kidney cancer (Ruteshouser et al, 2008; Wegert et al, 2009)
The primary role of the GLI2 protein is as an activator of Hh-dependent signaling upon pathway stimulation; in the absence of Hh ligand, a small fraction of GLI2 appears to be processed to a repressor form, but the bulk of the protein is completely degraded by the proteasome (reviewed in Briscoe and Therond, 2013). Both the processing and the degradation of GLI2 is dependent upon sequential phosphorylation of multiple serine residues by PKA, CK1 and GSK3, analagous to the requirement for these kinases in the processing of GLI3 (Pan et al, 2009; Pan et al, 2006; Pan and Wang, 2007). The differential processing of GLI2 and GLI3 depends on the processing determinant domain (PDD) in the C-terminal of the proteins, which directs the partial proteolysis of GLI3 in the absence of Hh signal. Substitution of 2 amino-acids from GLI3 into the GLI2 protein is sufficient to promote efficient processing of GLI2 to the repressor form (Pan and Wang, 2007)
In the absence of Hh signaling, the majority of full-length GLI3 is partially processed by the proteasome to a shorter form that serves as the principal repressor of Hh target genes (Wang et al, 2000). Processing depends on phosphorylation at 6 sites by PKA, which primes the protein for subsequent phosphorylation at adjacent sites by CK1 and GSK3. The hyperphosphorylated protein is then a direct target for betaTrCP-dependent ubiquitination and proteasome-dependent processing (Wang and Li, 2006; Tempe et al, 2006; Wen et al, 2010; Schrader et al, 2011; Pan and Wang, 2007)
While AKT1 gene copy number, expression level and phosphorylation are often increased in cancer, only one low frequency point mutation has been repeatedly reported in cancer and functionally studied. This mutation represents a substitution of a glutamic acid residue with lysine at position 17 of AKT1, and acts by enabling AKT1 to bind PIP2. PIP2-bound AKT1 is phosphorylated by TORC2 complex and by PDPK1 that is always present at the plasma membrane, due to low affinity for PIP2. Therefore, E17K substitution abrogates the need for PI3K in AKT1 activation (Carpten et al. 2007, Landgraf et al. 2008)
After the Cyclin D serves the role of mediating reactions by Cdk4 and Cdk6, it is shuttled to the cytoplasm and degraded in a ubiquitin-dependent manner. Whether Cdk4 and Cdk6 are truly redundant is a topic still under investigation, although both the kinases are required for normal cell cycle progression.
Destruction of the D type cyclins accompanies the end of the G1 phase, and the E type cyclins are involved in transition of the cell from G1 to S phase
Several transcription factors have been implicated in regulation of the RUNX2 gene transcription. Similar to the RUNX1 gene, the RUNX2 gene expression can be regulated from the proximal P2 promoter or the distal P1 promoter (reviewed in Li and Xiao 2007).Activated estrogen receptor alpha (ESR1) binds estrogen response elements (EREs) in the P2 promoter and stimulates RUNX2 transcription (Kammerer et al. 2013). Estrogen-related receptor alpha (ERRA) binds EREs or estrogen-related response elements (ERREs) in the P2 promoter of RUNX2. When ERRA is bound to its co-factor PPARG1CA (PGC1A), it stimulates RUNX2 transcription. When bound to its co-factor PPARG1CB (PGC1B), ERRA represses RUNX2 transcription (Kammerer et al. 2013).TWIST1, a basic helix-loop-helix (bHLH) transcription factor, stimulates RUNX2 transcription by binding to the E1-box in the P2 promoter (Yang, Yang et al. 2011). TWIST proteins also interact with the DNA-binding domain of RUNX2 to modulate its activity during skeletogenesis (Bialek et al. 2004). Schnurri-3 (SHN3) is another protein that interacts with RUNX2 to decrease its availability in the nucleus and therefore its activity (Jones et al. 2006). In contrast, RUNX2 and SATB2 interact to enhance the expression of osteoblast-specific genes (Dobreva et al. 2006). Formation of the heterodimer with CBFB (CBF-beta) also enhances the transcriptional activity of RUNX2 (Kundu et al. 2002, Yoshida et al. 2002, Otto et al. 2002).Transcription of RUNX2 from the proximal promoter is inhibited by binding of the glucocorticoid receptor (NR3C1) activated by dexamethasone (DEXA) to a glucocorticoid receptor response element (GRE), which is also present in the human promoter (Zhang et al. 2012).NKX3-2 (BAPX1), required for embryonic development of the axial skeleton (Tribioli and Lufkin 1999), binds the distal (P1) promoter of the RUNX2 gene and inhibits its transcription (Lengner et al. 2005). RUNX2-P1 transcription is also autoinhibited by RUNX2-P1, which binds to RUNX2 response elements in the P1 promoter of RUNX2 (Drissi et al. 2000). In contrast, binding of RUNX2-P2 to the proximal P2 promoter autoactivates transcription of RUNX2-P2 (Ducy et al. 1999). Binding of a homeodomain transcription factor DLX5, and possibly DLX6, to the RUNX2 P1 promoter stimulates RUNX2 transcription (Robledo et al. 2002, Lee et al. 2005). The homeobox transcription factor MSX2 can bind to DLX5 sites in the promoter of RUNX2 and inhibit transcription of RUNX2-P1 (Lee et al. 2005).Translocation of RUNX2 protein to the nucleus is inhibited by binding to non-activated STAT1 (Kim et al. 2003).Several E3 ubiquitin ligases were shown to polyubiquitinate RUNX2, targeting it for proteasome-mediated degradation: FBXW7a (Kumar et al. 2015), STUB1 (CHIP) (Li et al. 2008), SMURF1 (Zhao et al. 2003, Yang et al. 2014), WWP1 (Jones et al. 2006), and SKP2 (Thacker et al. 2016)
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay
association, direct interaction, phosphorylation reaction, physical
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Split renilla luciferase complementation, Synthetic Lethality, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
association, genetic, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, proximity-dependent biotin identification, pull down, tandem affinity purification
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay
association, direct interaction, phosphorylation reaction, physical
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Split renilla luciferase complementation, Synthetic Lethality, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
association, genetic, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, proximity-dependent biotin identification, pull down, tandem affinity purification
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay
association, direct interaction, phosphorylation reaction, physical
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Split renilla luciferase complementation, Synthetic Lethality, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
association, genetic, physical, physical association
Affinity Capture-Western, Biochemical Activity, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay
association, direct interaction, phosphorylation reaction, physical
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Split renilla luciferase complementation, Synthetic Lethality, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
association, genetic, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, proximity-dependent biotin identification, pull down, tandem affinity purification