241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm Nucleus Cytoplasm, cytoskeleton Celljunction, adherens junction Celljunction Cell membrane Cytoplasm, cytoskeleton,microtubule organizing center, centrosome Cytoplasm,cytoskeleton, spindle pole Cell junction, synapse Cytoplasm, cytoskeleton, ciliumbasal body Note=Colocalized withRAPGEF2 and TJP1 at cell-cell contacts (By similarity)Cytoplasmic when it is unstabilized (high level ofphosphorylation) or bound to CDH1 Translocates to the nucleuswhen it is stabilized (low level of phosphorylation) Interactionwith GLIS2 and MUC1 promotes nuclear translocation Interactionwith EMD inhibits nuclear localization The majority of beta-catenin is localized to the cell membrane In interphase,colocalizes with CROCC between CEP250 puncta at the proximal endof centrioles, and this localization is dependent on CROCC andCEP250 In mitosis, when NEK2 activity increases, it localizes tocentrosomes at spindle poles independent of CROCC Colocalizeswith CDK5 in the cell-cell contacts and plasma membrane ofundifferentiated and differentiated neuroblastoma cellsInteraction with FAM53B promotes translocation to the nucleus(PubMed:25183871)
Function (UniProt annotation)
Key downstream component of the canonical Wnt signalingpathway In the absence of Wnt, forms a complex with AXIN1, AXIN2,APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminalSer and Thr residues and ubiquitination of CTNNB1 via BTRC and itssubsequent degradation by the proteasome In the presence of Wntligand, CTNNB1 is not ubiquitinated and accumulates in thenucleus, where it acts as a coactivator for transcription factorsof the TCF/LEF family, leading to activate Wnt responsive genesInvolved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex Acts as a negative regulator ofcentrosome cohesion Involved in the CDK2/PTPN6/CTNNB1/CEACAM1pathway of insulin internalization Blocks anoikis of malignantkidney and intestinal epithelial cells and promotes theiranchorage-independent growth by down-regulating DAPK2 DisruptsPML function and PML-NB formation by inhibiting RANBP2-mediatedsumoylation of PML (PubMed:17524503, PubMed:18077326,PubMed:18086858, PubMed:18957423, PubMed:21262353,PubMed:22647378, PubMed:22699938, PubMed:22155184) Promotesneurogenesis by maintaining sympathetic neuroblasts within thecell cycle (By similarity)
Rap1 is a small GTPase that controls diverse processes, such as cell adhesion, cell-cell junction formation and cell polarity. Like all G proteins, Rap1 cycles between an inactive GDP-bound and an active GTP-bound conformation. A variety of extracellular signals control this cycle through the regulation of several unique guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types.
Wnt proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. There are at least three different Wnt pathways: the canonical pathway, the planar cell polarity (PCP) pathway and the Wnt/Ca2+ pathway. In the canonical Wnt pathway, the major effect of Wnt ligand binding to its receptor is the stabilization of cytoplasmic beta-catenin through inhibition of the bea-catenin degradation complex. Beta-catenin is then free to enter the nucleus and activate Wnt-regulated genes through its interaction with TCF (T-cell factor) family transcription factors and concomitant recruitment of coactivators. Planar cell polarity (PCP) signaling leads to the activation of the small GTPases RHOA (RAS homologue gene-family member A) and RAC1, which activate the stress kinase JNK (Jun N-terminal kinase) and ROCK (RHO-associated coiled-coil-containing protein kinase 1) and leads to remodelling of the cytoskeleton and changes in cell adhesion and motility. WNT-Ca2+ signalling is mediated through G proteins and phospholipases and leads to transient increases in cytoplasmic free calcium that subsequently activate the kinase PKC (protein kinase C) and CAMKII (calcium calmodulin mediated kinase II) and the phosphatase calcineurin.
Hippo signaling is an evolutionarily conserved signaling pathway that controls organ size from flies to humans. In humans and mice, the pathway consists of the MST1 and MST2 kinases, their cofactor Salvador and LATS1 and LATS2. In response to high cell densities, activated LATS1/2 phosphorylates the transcriptional coactivators YAP and TAZ, promoting its cytoplasmic localization, leading to cell apoptosis and restricting organ size overgrowth. When the Hippo pathway is inactivated at low cell density, YAP/TAZ translocates into the nucleus to bind to the transcription enhancer factor (TEAD/TEF) family of transcriptional factors to promote cell growth and proliferation. YAP/TAZ also interacts with other transcriptional factors or signaling molecules, by which Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-beta and Wnt growth factors.
Cell-matrix adhesions play essential roles in important biological processes including cell motility, cell proliferation, cell differentiation, regulation of gene expression and cell survival. At the cell-extracellular matrix contact points, specialized structures are formed and termed focal adhesions, where bundles of actin filaments are anchored to transmembrane receptors of the integrin family through a multi-molecular complex of junctional plaque proteins. Some of the constituents of focal adhesions participate in the structural link between membrane receptors and the actin cytoskeleton, while others are signalling molecules, including different protein kinases and phosphatases, their substrates, and various adapter proteins. Integrin signaling is dependent upon the non-receptor tyrosine kinase activities of the FAK and src proteins as well as the adaptor protein functions of FAK, src and Shc to initiate downstream signaling events. These signalling events culminate in reorganization of the actin cytoskeleton; a prerequisite for changes in cell shape and motility, and gene expression. Similar morphological alterations and modulation of gene expression are initiated by the binding of growth factors to their respective receptors, emphasizing the considerable crosstalk between adhesion- and growth factor-mediated signalling.
Cell-cell adherens junctions (AJs), the most common type of intercellular adhesions, are important for maintaining tissue architecture and cell polarity and can limit cell movement and proliferation. At AJs, E-cadherin serves as an essential cell adhesion molecules (CAMs). The cytoplasmic tail binds beta-catenin, which in turn binds alpha-catenin. Alpha-catenin is associated with F-actin bundles directly and indirectly. The integrity of the cadherin-catenin complex is negatively regulated by phosphorylation of beta-catenin by receptor tyrosine kinases (RTKs) and cytoplasmic tyrosine kinases (Fer, Fyn, Yes, and Src), which leads to dissociation of the cadherin-catenin complex. Integrity of this complex is positively regulated by beta -catenin phosphorylation by casein kinase II, and dephosphorylation by protein tyrosine phosphatases. Changes in the phosphorylation state of beta-catenin affect cell-cell adhesion, cell migration and the level of signaling beta-catenin. Wnt signaling acts as a positive regulator of beta-catenin by inhibiting beta-catenin degradation, which stabilizes beta-catenin, and causes its accumulation. Cadherin may acts as a negative regulator of signaling beta-catenin as it binds beta-catenin at the cell surface and thereby sequesters it from the nucleus. Nectins also function as CAMs at AJs, but are more highly concentrated at AJs than E-cadherin. Nectins transduce signals through Cdc42 and Rac, which reorganize the actin cytoskeleton, regulate the formation of AJs, and strengthen cell-cell adhesion.
Pluripotent stem cells (PSCs) are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. The types of PSCs known to date include embryonic stem (ES) and induced pluripotent stem (iPS) cells. ES cells are derived from the inner cell mass (ICM) of blastocyst-stage embryos. iPS cells are generated by reprogramming somatic cells back to pluripotent state with defined reprogramming factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors). PSCs including ES cells and iPS cells are categorized into two groups by their morphology, gene expression profile and external signal dependence. Conventional mouse-type ES/iPS cells are called 'naive state' cells. They are mainly maintained under the control of LIF and BMP signaling. On the other hand, human-type ES/iPS cells, which are in need of Activin and FGF signaling, are termed 'primed state'. However, these signaling pathways converge towards the activation of a core transcriptional network that is similar in both groups and involves OCt4, Nanog and Sox2. The three transcription factors and their downstream target genes coordinately promote self-renewal and pluripotency.
Leukocyte migaration from the blood into tissues is vital for immune surveillance and inflammation. During this diapedesis of leukocytes, the leukocytes bind to endothelial cell adhesion molecules (CAM) and then migrate across the vascular endothelium. A leukocyte adherent to CAMs on the endothelial cells moves forward by leading-edge protrusion and retraction of its tail. In this process, alphaL /beta2 integrin activates through Vav1, RhoA, which subsequently activates the kinase p160ROCK. ROCK activation leads to MLC phosphorylation, resulting in retraction of the actin cytoskeleton. Moreover, Leukocytes activate endothelial cell signals that stimulate endothelial cell retraction during localized dissociation of the endothelial cell junctions. ICAM-1-mediated signals activate an endothelial cell calcium flux and PKC, which are required for ICAM-1 dependent leukocyte migration. VCAM-1 is involved in the opening of the endothelial passagethrough which leukocytes can extravasate. In this regard, VCAM-1 ligation induces NADPH oxidase activation and the production of reactive oxygen species (ROS) in a Rac-mediated manner, with subsequent activation of matrix metallopoteinases and loss of VE-cadherin-mediated adhesion.
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortic peptides. MC1R activates the cyclic AMP (cAMP) response-element binding protein (CREB). Increased expression of MITF and its activation by phosphorylation (P) stimulate the transcription of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT), which produce melanin. Melanin synthesis takes place within specialized intracellular organelles named melanosomes. Melanin-containing melanosomes then move from the perinuclear region to the dendrite tips and are transferred to keratinocytes by a still not well-characterized mechanism.
The thyroid hormones (THs) are important regulators of growth, development and metabolism. The action of TH is mainly mediated by T3 (3,5,3'-triiodo-L-thyronine). Thyroid hormones, L-thyroxine (T4) and T3 enter the cell through transporter proteins. Although the major form of TH in the blood is T4, it is converted to the more active hormone T3 within cells. T3 binds to nuclear thyroid hormone receptors (TRs), which functions as a ligand-dependent transcription factor and controls the expression of target genes (genomic action). Nongenomic mechanisms of action is initiated at the integrin receptor. The plasma membrane alpha(v)beta(3)-integrin has distinct binding sites for T3 and T4. One binding site binds only T3 and activates the phosphatidylinositol 3-kinase (PI3K) pathway. The other binding site binds both T3 and T4 and activates the ERK1/2 MAP kinase pathway.
Cushing syndrome (CS) is a rare disorder resulting from prolonged exposure to excess glucocorticoids via exogenous and endogenous sources. The typical clinical features of CS are related to hypercortisolism and include accumulation of central fat, moon facies, neuromuscular weakness, osteoporosis or bone fractures, metabolic complications, and mood changes. Traditionally, endogenous CS is classified as adrenocorticotropic hormone (ACTH)-dependent (about 80%) or ACTH- independent (about 20%). Among ACTH-dependent forms, pituitary corticotroph adenoma (Cushing's disease) is most common. Most pituitary tumors are sporadic, resulting from monoclonal expansion of a single mutated cell. Recently recurrent activating somatic driver mutations in the ubiquitin-specific protease 8 gene (USP8) were identified in almost half of corticotroph adenoma. Germline mutations in MEN1 (encoding menin), AIP (encoding aryl-hydrocarbon receptor-interacting protein), PRKAR1A (encoding cAMP-dependent protein kinase type I alpha regulatory subunit) and CDKN1B (encoding cyclin-dependent kinase inhibitor 1B; also known as p27 Kip1) have been identified in familial forms of pituitary adenomas. However, the frequency of familial pituitary adenomas is less than 5% in patients with pituitary adenomas. Among ACTH-independent CS, adrenal adenoma is most common. Rare adrenal causes of CS include primary bilateral macronodular adrenal hyperplasia (BMAH) or primary pigmented nodular adrenocortical disease (PPNAD).
Many pathogenic bacteria can invade phagocytic and non-phagocytic cells and colonize them intracellularly, then become disseminated to other cells. Invasive bacteria induce their own uptake by non-phagocytic host cells (e.g. epithelial cells) using two mechanisms referred to as zipper model and trigger model. Listeria, Staphylococcus, Streptococcus, and Yersinia are examples of bacteria that enter using the zipper model. These bacteria express proteins on their surfaces that interact with cellular receptors, initiating signalling cascades that result in close apposition of the cellular membrane around the entering bacteria. Shigella and Salmonella are the examples of bacteria entering cells using the trigger model. These bacteria use type III secretion systems to inject protein effectors that interact with the actin cytoskeleton.
Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are closely related pathogenic strains of Escherichia coli. The hallmark of EPEC/EHEC infections [DS:H00278 H00277] is induction of attaching and effacing (A/E) lesions that damage intestinal epithelial cells. The capacity to form A/E lesions is encoded mainly by the locus of enterocyte effacement (LEE) pathogenicity island. Tir, Map, EspF, EspG are known LEE-encoded effector proteins secreted via the type III secretion system, which is also LEE-encoded, into the host cell. EPEC and EHEC Tir's link the extracellular bacterium to the cell cytoskeleton. Map and EspF are involved in mitochondrion membrane permeabilization. EspG interacts with tubulins and stimulates microtubule destabilization. LEE-encoded adhesin or intimin (Eae) is exported via the general secretory pathway to the periplasm, where it is inserted into the outer membrane. In addition to Tir, two potential host cell-carried intimin receptors, beta1 integrin (ITGB1) and nucleolin (NCL), have so far been identified. The distinguishing feature of EHEC is the elaboration of Shiga-like toxin (Stx). Stx cleaves ribosomal RNA, thereby disrupting protein synthesis and killing the intoxicated epithelial or endothelial cells.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Human papillomavirus (HPV) is a non-enveloped, double-stranded DNA virus. HPV infect mucoal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. All types of HPV share a common genomic structure and encode eight proteins: E1, E2, E4, E5, E6, and E7 (early) and L1 and L2 (late). It has been demonstrated that E1 and E2 are involved in viral transcription and replication. The functions of the E4 protein is not yet fully understood. E5, E6, and E7 act as oncoproteins. E5 inhibits the V-ATPase, prolonging EGFR signaling and thereby promoting cell proliferation. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways. Among these pathways, PI3K/Akt signalling cascade plays a very important role in HPV-induced carcinogenesis. The L1 and L2 proteins form icosahedral capsids for progeny virion generation.
Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, SRF, and NFAT.
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus, and is associated with the pathogenesis of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). Like all other herpesviruses, KSHV displays two modes of life cycle, latency and lytic replication, which are characterized by the patterns of viral gene expression. Genes expressed in latency (LANA, v-cyclin, v-FLIP, Kaposins A, B and C and viral miRNAs) are mainly thought to facilitate the establishment of life long latency in its host and survival against the host innate, and adaptive immune surveillance mechanisms. Among the viral proteins shown to be expressed during lytic replication are potent signaling molecules such as vGPCR, vIL6, vIRFs, vCCLs, K1 and K15, which have been implicated experimentally in the angiogenic and inflammatory phenotype observed in KS lesions. Several of these latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of severe human malignancies.
Many proteoglycans (PGs) in the tumor microenvironment have been shown to be key macromolecules that contribute to biology of various types of cancer including proliferation, adhesion, angiogenesis and metastasis, affecting tumor progress. The four main types of proteoglycans include hyaluronan (HA), which does not occur as a PG but in free form, heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), dematan sulfate proteoglycans (DSPG) and keratan sulfate proteoglycans (KSPGs) [BR:00535]. Among these proteoglycans such as HA, acting with CD44, promotes tumor cell growth and migration, whereas other proteoglycans such as syndecans (-1~-4), glypican (-1, -3) and perlecan may interact with growth factors, cytokines, morphogens and enzymes through HS chains [BR: 00536], also leading to tumor growth and invasion. In contrast, some of the small leucine-rich proteolgycans, such as decorin and lumican, can function as tumor repressors, and modulate the signaling pathways by the interaction of their core proteins and multiple receptors.
Colorectal cancer (CRC) is the second largest cause of cancer-related deaths in Western countries. CRC arises from the colorectal epithelium as a result of the accumulation of genetic alterations in defined oncogenes and tumour suppressor genes (TSG). Two major mechanisms of genomic instability have been identified in sporadic CRC progression. The first, known as chromosomal instability (CIN), results from a series of genetic changes that involve the activation of oncogenes such as K-ras and inactivation of TSG such as p53, DCC/Smad4, and APC. The second, known as microsatellite instability (MSI), results from inactivation of the DNA mismatch repair genes MLH1 and/or MSH2 by hypermethylation of their promoter, and secondary mutation of genes with coding microsatellites, such as transforming growth factor receptor II (TGF-RII) and BAX. Hereditary syndromes have germline mutations in specific genes (mutation in the tumour suppressor gene APC on chromosome 5q in FAP, mutated DNA mismatch repair genes in HNPCC).
Endometrial cancer (EC) is the most common gynaecological malignancy and the fourth most common malignancy in women in the developed world after breast, colorectal and lung cancer. Two types of endometrial carcinoma are distinguished with respect to biology and clinical course. Type-I carcinoma is related to hyperestrogenism by association with endometrial hyperplasia, frequent expression of estrogen and progesterone receptors and younger age, whereas type-II carcinoma is unrelated to estrogen, associated with atrophic endometrium, frequent lack of estrogen and progesterone receptors and older age. The morphologic differences in these cancers are mirrored in their molecular genetic profile with type I showing defects in DNA-mismatch repair and mutations in PTEN, K-ras, and beta-catenin, and type II showing aneuploidy, p53 mutations, and her2/neu amplification.
Prostate cancer constitutes a major health problem in Western countries. It is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. The identification of key molecular alterations in prostate-cancer cells implicates carcinogen defenses (GSTP1), growth-factor-signaling pathways (NKX3.1, PTEN, and p27), and androgens (AR) as critical determinants of the phenotype of prostate-cancer cells. Glutathione S-transferases (GSTP1) are detoxifying enzymes. Cells of prostatic intraepithelial neoplasia, devoid of GSTP1, undergo genomic damage mediated by carcinogens. NKX3.1, PTEN, and p27 regulate the growth and survival of prostate cells in the normal prostate. Inadequate levels of PTEN and NKX3.1 lead to a reduction in p27 levels and to increased proliferation and decreased apoptosis. Androgen receptor (AR) is a transcription factor that is normally activated by its androgen ligand. During androgen withdrawal therapy, the AR signal transduction pathway also could be activated by amplification of the AR gene, by AR gene mutations, or by altered activity of AR coactivators. Through these mechanisms, tumor cells lead to the emergence of androgen-independent prostate cancer.
Thyroid cancer is the most common endocrine malignancy and accounts for the majority of endocrine cancer- related deaths each year. More than 95% of thyroid carcinomas are derived from follicular cells. Their behavior varies from the indolent growing, well-differentiated papillary and follicular carcinomas (PTC and FTC, respectively) to the extremely aggressive undifferentiated carcinoma (UC). Somatic rearrangements of RET and TRK are almost exclusively found in PTC and may be found in early stages. The most distinctive molecular features of FTC are the prominence of aneuploidy and the high prevalence of RAS mutations and PAX8-PPAR{gamma} rearrangements. p53 seems to play a crucial role in the dedifferentiation process of thyroid carcinoma.
Cancer of the skin is the most common cancer in Caucasians and basal cell carcinomas (BCC) account for 90% of all skin cancers. The vast majority of BCC cases are sporadic, though there is a rare familial syndrome basal cell nevus syndrome (BCNS, or Gorlin syndrome) that predisposes to development of BCC. In addition, there is strong epidemiological and genetic evidence that demonstrates UV exposure as a risk factor of prime importance. The development of basal cell carcinoma is associated with constitutive activation of sonic hedgehog signaling. The mutations in SMOH, PTCH1, and SHH in BCCs result in continuous activation of target genes. At a cellular level, sonic hedgehog signaling promotes cell proliferation. Mutations in TP53 are also found with high frequency (>50%) in sporadic BCC.
Breast cancer is the leading cause of cancer death among women worldwide. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. The molecular subtypes of breast cancer, which are based on the presence or absence of hormone receptors (estrogen and progesterone subtypes) and human epidermal growth factor receptor-2 (HER2), include: hormone receptor positive and HER2 negative (luminal A subtype), hormone receptor positive and HER2 positive (luminal B subtype), hormone receptor negative and HER2 positive (HER2 positive), and hormone receptor negative and HER2 negative (basal-like or triple-negative breast cancers (TNBCs)). Hormone receptor positive breast cancers are largely driven by the estrogen/ER pathway. In HER2 positive breast tumours, HER2 activates the PI3K/AKT and the RAS/RAF/MAPK pathways, and stimulate cell growth, survival and differentiation. In patients suffering from TNBC, the deregulation of various signalling pathways (Notch and Wnt/beta-catenin), EGFR protein have been confirmed. In the case of breast cancer only 8% of all cancers are hereditary, a phenomenon linked to genetic changes in BRCA1 or BRCA2. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers.
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and one of the rare human neoplasms etiologically linked to viral factors. It has been shown that, after HBV/HCV infection and alcohol or aflatoxin B1 exposure, genetic and epigenetic changes occur. The recurrent mutated genes were found to be highly enriched in multiple key driver signaling processes, including telomere maintenance, TP53, cell cycle regulation, the Wnt/beta-catenin pathway (CTNNB1 and AXIN1), the phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Recent studies using whole-exome sequencing have revealed recurrent mutations in new driver genes involved in the chromatin remodelling (ARID1A and ARID2) and the oxidative stress (NFE2L2) pathways.
Gastric cancer (GC) is one of the world's most common cancers. According to Lauren's histological classification gastric cancer is divided into two distinct histological groups - the intestinal and diffuse types. Several genetic changes have been identified in intestinal-type GC. The intestinal metaplasia is characterized by mutations in p53 gene, reduced expression of retinoic acid receptor beta (RAR-beta) and hTERT expression. Gastric adenomas furthermore display mutations in the APC gene, reduced p27 expression and cyclin E amplification. In addition, amplification and overexpression of c-ErbB2, reduced TGF-beta receptor type I (TGFBRI) expression and complete loss of p27 expression are commonly observed in more advanced GC. The main molecular changes observed in diffuse-type GCs include loss of E-cadherin function by mutations in CDH1 and amplification of MET and FGFR2F.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure, and sudden death. The hallmark pathological findings are progressive myocyte loss and fibrofatty replacement, with a predilection for the right ventricle. A number of genetic studies have identified mutations in various components of the cardiac desmosome that have important roles in the pathogenesis of ARVC. Disruption of desmosomal function by defective proteins might lead to death of myocytes under mechanical stress. The myocardial injury may be accompanied by inflammation. Since regeneration of cardiac myocytes is limited, repair by fibrofatty replacement occurs. Several studies have implicated that desmosome dysfunction results in the delocalization and nuclear translocation of plakoglobin. As a result, competition between plakoglobin and beta-catenin will lead to the inhibition of Wnt/beta-catenin signaling, resulting in a shift from a myocyte fate towards an adipocyte fate of cells. The ryanodine receptor plays a crucial part in electromechanical coupling by control of release of calcium from the sarcoplasmic reticulum into the cytosol. Therefore, defects in this receptor could result in an imbalance of calcium homeostasis that might trigger cell death.
Shear stress represents the frictional force that the flow of blood exerts at the endothelial surface of the vessel wall and plays a central role in vascular biology and contributes to the progress of atherosclerosis. Sustained laminar flow with high shear stress upregulates expressions of endothelial cell (EC) genes and proteins that are protective against atherosclerosis. The key shear stress-induced transcription factors that govern the expression of these genes are Kruppel-like factor 2 (KLF2) and nuclear factor erythroid 2-like 2 (Nrf2). On the other hand, disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote oxidative and inflammatory states in the artery wall, resulting in atherogenesis. Important transcriptional events that reflect this condition of ECs in disturbed flow include the activation of activator protein 1 (AP-1) and nuclear factor kappaB (NF-kappaB).
The beta-catenin destruction complex plays a key role in the canonical Wnt signaling pathway. In the absence of Wnt signaling, this complex controls the levels of cytoplamic beta-catenin. Beta-catenin associates with and is phosphorylated by the destruction complex. Phosphorylated beta-catenin is recognized and ubiquitinated by the SCF-beta TrCP ubiquitin ligase complex and is subsequently degraded by the proteasome (reviewed in Kimelman and Xu, 2006)
Degradation of beta-catenin is initiated following amino-terminal serine/threonine phosphorylation. Phosphorylation of B-catenin at S45 by CK1 alpha primes the subsequent sequential GSK-3-mediated phosphorylation at Thr41, Ser37 and Ser33 (Amit et al., 2002 ; Lui et al., 2002)
19 WNT ligands and 10 FZD receptors have been identified in human cells; interactions amongst these ligands and receptors vary in a developmental and tissue-specific manner and lead to activation of so-called 'canonical' and 'non-canonical' WNT signaling. In the canonical WNT signaling pathway, binding of a WNT ligand to the Frizzled (FZD) and lipoprotein receptor-related protein (LRP) receptors results in the inactivation of the destruction complex, the stabilization and nuclear translocation of beta-catenin and subsequent activation of T-cell factor/lymphoid enhancing factor (TCF/LEF)-dependent transcription. Transcriptional activation in response to canonical WNT signaling controls processes such as cell fate, proliferation and self renewal of stem cells, as well as contributing to oncogenesis (reviewed in MacDonald et al, 2009; Saito-Diaz et al, 2013; Kim et al, 2013)
Once in the nucleus, beta-catenin is recruited to WNT target genes through interaction with TCF/LEF transcription factors. This family, which consists of TCF7 (also known as TCF1), TCF7L1 (also known as TCF3), TCF7L2 (also known as TCF4) and TCF7L3 (also known as LEF1), are HMG-containing transcription factors that bind to the WNT responsive elements in target gene promoters (reviewed in Brantjes et al, 2002). In the absence of WNT signal, TCF/LEF proteins recruit Groucho/TLE repressors to inhibit transcription; upon WNT stimulation, beta-catenin can displace Groucho/TLE from TCF/LEF proteins to initiate transcriptional activation (reviewed in Chen and Courey, 2000). Although this model for WNT-dependent activation of target genes is widely accepted, it is important to note that TCF/LEF proteins are not redundant and can contribute to WNT target gene expression in a number of different ways (reviewed in Brantjes et al, 2002; MacDonald et al, 2009). In particular, TCF7L1 (TCF3) is thought to have a more pronounced repressor function than other TCF/LEF family members. A couple of recent studies in Xenopus and mammalian cells show that WNT- and beta-catenin-dependent phosphorylation of TCF7L1(TCF3) promotes its dissociation from the promoter of target genes and allows gene expression through relief of this repression activity (Hikasa et al, 2010; Hikasa et al, 2011).The role of beta-catenin at WNT promoters hinges upon its ability to act as a scaffold for the recruitment of other proteins. The structure of beta-catenin consists of 12 imperfect ARM repeats (R1-12) flanked by an N-terminal and C-terminal extension (NTD and CTD respectively), with a conserved Helix C located between R12 and the CTD. Nuclear beta-catenin interacts with TCF/LEF at WNT target genes through ARM domains 3-9 (Graham et al, 2000; Poy et al, 2001; Xing et al, 2008). The N and the C terminal regions are important for the recruitment of transcriptional activator and repressors that contribute to WNT target gene expression (reviewed in Mosimann et al, 2009; Valenta et al, 2012). The N-terminal ARM domains 1-4 recruit the WNT-pathway specific activators BCL9:PYGO while the C-terminal region (R11-CTD) interacts with a wide range of general transcriptional activators that are involved in chromatin remodelling and transcription initiation. These include HATs such as P300, CBP and TIP60, histone methyltransferases such as MLL1 and 2, SWI/SNF factors BRG1 and ISWI and components of the PAF complex (reviewed in Mosimann et al, 2009; Valenta et al, 2012). Although many binding partners have been identified for the C-terminal region of beta-catenin, in many cases the timing and relationship of these interactions and indeed, the exact complex composition remains to be elucidated. Moreover, because many of the interacting partners appear to bind to overlapping regions of beta-catenin, it is unlikely that they all bind simultaneously. For simplicity, the interactions have been depicted as though they occur independently of one another; more accurately they are likely to cycle successively on and off beta-catenin to promote an active chromatin structure (reviewed in Willert and Jones, 2006; Valenta et al, 2012)
Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1) can bind exogenous double-stranded RNA and double-stranded DNA (Wilson SA et al. 1998; Yang P et al. 2010). LRRFIP1 was shown to mediate Listeria monocytogenes- and vesicular stomatitis virus (VSV)-induced IFN-beta production in mouse primary macrophages by regulating beta-catenin activity. Beta-catenin possibly functions as a transcriptional cofactor of IRF3 to initiate Ifnb1 transcription (Yang P et al. 2010)
Apoptotic cells show dramatic rearrangements of tight junctions, adherens junctions, and desmosomes (Abreu et al., 2000). Desmosome-specific members of the cadherin superfamily of cell adhesion molecules including desmoglein-3, plakophilin-1 and desmoplakin are cleaved by caspases after onset of apoptosis (Weiske et al., 2001). Cleavage results in the disruption of the desmosome structure and thus contributes to cell rounding and disintegration of the intermediate filament system (Weiske et al., 2001)
CDO/Cdon (cell-adhesion-molecule-related/downregulated by oncogenes) is a type I transmembrane multifunctional co-receptor consisting of five immunoglobulin and three fibronectin type III (FNIII) repeats in the extracellular domain, and an intracellular domain with no identifiable motifs. It has been implicated in enhancing muscle differentiation in promyogenic cells. CDO exert its promyogenic effects as a component of multiprotein complexes that include the closely related factor Boc, the Ig superfamily receptor neogenin and its ligand netrin-3, and the adhesion molecules N- and M-cadherin. CDO modulates the Cdc42 and p38 mitogen-activated protein kinase (MAPK) pathways via a direct association with two scaffold-type proteins, JLP and Bnip-2, to regulate activities of myogenic bHLH factors and myogenic differentiation. CDO activates myogenic bHLH factors via enhanced heterodimer formation, most likely by inducing hyper-phosphorylation of E proteins. Myogenic basic helix-loop-helix (bHLH) proteins are master regulatory proteins that activate the transcription of many muscle-specific genes during myogenesis. These myogenic bHLH proteins also referred to as MyoD family includes four members, MyoD, myogenin, myf5 and MRF4. These myogenic factors dimerize with E-proteins such as E12/E47, ITF-2 and HEB to form heterodimeric complexes that bind to a conserved DNA sequence known as the E box, which is present in the promoters and enhancers of most muscle-specific genes. Myocyte enhancer binding factor 2 (MEF2), which is a member of the MADS box family, also plays an important role in muscle differentiation. MEF2 activates transcription by binding to the consensus sequence, called the MEF2-binding site, which is also found in the control regions of numerous muscle-specific genes. MEF2 and myogenic bHLH proteins synergistically activate expression of muscle-specific genes via protein-protein interactions between DNA-binding domains of these heterologous classes of transcription factors. Members of the MyoD and MEF2 family of transcription factors associate combinatorially to control myoblast specification, differentiation and proliferation
The mechanisms involved in downregulation of TCF-dependent transcription are not yet very well understood. beta-catenin is known to recruit a number of transcriptional repressors, including Reptin, SMRT and NCoR, to the TCF/LEF complex, allowing the transition from activation to repression (Bauer et al, 2000; Weiske et al, 2007; Song and Gelmann, 2008). CTNNBIP1 (also known as ICAT) and Chibby are inhibitors of TCF-dependent signaling that function by binding directly to beta-catenin and preventing interactions with critical components of the transactivation machinery (Takemaru et al, 2003; Li et al, 2008; Tago et al, 2000; Graham et al, 2002; Daniels and Weiss, 2002). Chibby additionally promotes the nuclear export of beta-catenin in conjunction with 14-3-3/YWHAZ proteins (Takemura et al, 2003; Li et al, 2008). A couple of recent studies have also suggested a role for nuclear APC in the disassembly of the beta-catenin activation complex (Hamada and Bienz, 2004; Sierra et al, 2006). It is worth noting that while some of the players involved in the disassembly of the beta-catenin transactivating complex are beginning to be worked out in vitro, the significance of their role in vivo is not yet fully understood, and some can be knocked out with little effect on endogenous WNT signaling (see for instance Voronina et al, 2009)
In L cells of the intestine the transcription factors TCF-4 (TCF7L2) and Beta-catenin form a heterodimer and bind the G2 enhancer of the Proglucagon gene GCG,activating its transcription to yield Proglucagon mRNA and, following translation, Proglucagon protein. The prohormone convertase PC1 present in the secretory granules of L cells cleaves Proglucagon at two sites to yield mostly Glucagon-like Peptide-1 (7-36) with a small amount of Glucagon-like Peptide-1 (7-37). Glucagon-like Peptide-1 (7-36 and 7-37) (GLP-1) is secreted into the bloodstream in response to glucose, fatty acids, insulin, leptin, gastrin-releasing peptide, cholinergic transmitters, beta-adrenergic transmitters, and peptidergic transmitters. The half-life of GLP-1 in the bloodstream is determined by Dipeptidyl Peptidase IV, which cleaves 2 amino acids at the amino terminus of GLP-1, rendering it biologically inactive
A number of so called non-canonical WNT ligands have been shown to promote intracellular calcium release upon FZD binding. This beta-catenin-independent WNT pathway acts through heterotrimeric G proteins and promotes calcium release through phophoinositol signaling and activation of phosphodiesterase (PDE). Downstream effectors include the calcium/calmodulin-dependent kinase II (CaMK2) and PKC (reviewed in De, 2011). The WNT Ca2+ pathway is important in dorsoventral polarity, convergent extension and organ formation in vertebrates and also has roles in negatively regulating 'canonical' beta-catenin-dependent transcription. Non-canonical WNT Ca2+ signaling is also implicated in inflammatory response and cancer (reviewed in Kohn and Moon, 2005; Sugimura and Li, 2010)
The adherens junctions (AJ) are multiprotein complexes that promote homotypic cell adhesion in nearly all types of tissue by linking membrane and cytoskeletal components at discrete contact regions (reviewed in Hartsock & Nelson 2008; Gumbiner 2005; Ebnet, 2008). The molecular constituents of adherens junctions form adhesive units which are organized into higher order junctional adhesions that create a zipper-like seal between adjacent cells. Junctional adhesions function in epithelial cell polarization and in the coupling of cytoskeletons in adjacent cells that allow coordinated movements. During embryonic development, AJs function in specifying adhesion between cells and contribute in the sorting of different cell types. AJs also regulate cell polarity and shape, promote cell-cell communication and help mediate contact inhibition of cell growth. This module covers transdimerization events involving AJ transmembrane proteins (cadherins and nectins) (Gumbiner 2005; Ebnet 2008; Hartsock & Nelson 2008)
The genes regulated by beta-catenin and TCF/LEF are involved in a diverse range of functions in cellular proliferation, differentiation, embryogenesis and tissue homeostasis, and include transcription factors, cell cycle regulators, growth factors, proteinases and inflammatory cytokines, among others (reviewed in Vlad et al, 2008). A number of WNT signaling components are themselves positively or negatively regulated targets of TCF/LEF-dependent transcription, establishing feedback loops to enhance or restrict signaling (see for instance, Khan et al 2007; Chamorro et al, 2005; Roose et al, 1999; Lustig et al, 2002). Other than a few of these general feedback targets (e.g. Axin2), most target genes are cell- and/or tissue-specific. A list of WNT/beta-catenin-dependent target genes is maintained at http://www.standford.edu/group/nusselab/cgi-bin/wnt/target_genes
Upon stimulation with WNT ligand, AXIN and GSK3beta are recruited to the plasma membrane through interaction with DVL (Tamai et al, 2004; Mao et al, 2001; reviewed in He et al, 2004). Polymerization of membrane-associated DVL and GSK3beta- and CSNK1-mediated phosphorylation of LRP5/6 establish a feed-forward mechanism for enhanced membrane recruitment of AXIN upon WNT signaling (Tamai et al, 2004; Cong et al, 2004; Zeng et al, 2005; Bilic et al, 2007). In Xenopus oocytes, but not necessarily all sytems, AXIN is present in limiting concentrations and is considered rate limiting for the assembly of the destruction complex (Lee et al, 2003; Benchabane et al, 2008; Tan et al, 2012; reviewed in MacDonald et al, 2009). The recruitment of AXIN away from the destruction complex upon WNT stimulation effectively destabilizes the destruction complex and contributes to the accumulation of free beta-catenin (Kikuchi, 1999; Lee et al, 2003). AXIN association with the destruction complex is also regulated by phosphorylation. In the active destruction complex, AXIN is phosphorylated by GSK3beta; dephosphorylation by protein phosphatase 1 (PP1) or protein phosphatase 2A (PP2A) destabilizes the interaction of AXIN with the other components of the destruction complex and promotes its disassembly (Luo et al, 2007; Willert et al, 1999; Jho et al, 1999). Free AXIN is also subject to degradation by the 26S proteasome in a manner that depends on the poly-ADP-ribosylating enzymes tankyrase 1 and 2 (Huang et al, 2009)
The free radical nitric oxide (NO), produced by endothelial NO synthase (eNOS), is an important vasoactive substance in normal vascular biology and pathophysiology. It plays an important role in vascular functions such as vascular dilation and angiogenesis (Murohara et al. 1998, Ziche at al. 1997). NO has been reported to be a downstream mediator in the angiogenic response mediated by VEGF, but the mechanism by which NO promotes neovessel formation is not clear (Babaei & Stewart 2002). Persistent vasodilation and increase in vascular permeability in the existing vasculature is observed during the early steps of angiogenesis, suggesting that these hemodynamic changes are indispensable during an angiogenic processes. NO production by VEGF can occur either through the activation of PI3K or through a PLC-gamma dependent manner. Once activated both pathways converge on AKT phosphorylation of eNOS, releasing NO (Lin & Sessa 2006). VEGF also regulates vascular permeability by promoting VE-cadherin endocytosis at the cell surface through a VEGFR-2-Src-Vav2-Rac-PAK signalling axis
GSK3beta is subject to in-frame missplicing in CML stem cells resulting in the production of mutant protein that lacks the AXIN and FRAT binding domains. Cells containing this mutant GSK3beta show elevated levels of nuclear beta-catenin and enhanced TCF-dependent reporter activity (Jamieson et al, 2008; Abrahamsson et al, 2009)
S33 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear localization of the protein and enhanced WNT signaling (Groen et al, 2008; Nhieu et al, 1999; Clements et al, 2002; reviewed in Polakis, 2000). S33 mutations have been identified in cancers of the central nervous system, liver, endometrium and stomach, among others (reviewed in Polakis, 2000)
S37 mutations of beta-catenin interfere with GSK3 phosphorylation and stabilize the protein, resulting in enhanced WNT pathway signaling (Nhieu et al, 1999; Clements et al, 2002; reviewed in Polakis, 2000). S37 mutations have been identified in cancers of the brain, liver, ovary and large intestine, among others (reviewed in Polakis, 2000)
S45 mutants of beta-catenin have been identified in colorectal and hepatocellular carcinomas, soft tissue cancer and Wilms Tumors, among others (reviewed in Polakis, 2000). These mutations abolish the CK1alpha phosphorylation site of beta-catenin which acts as a critical priming site for GSK3 phosphorylation of T41( and subsequently S37 and S33) thus preventing its ubiquitin-mediated degradation (Morin et al, 1997; Amit et al, 2002)
T41 mutations of beta-catenin interfere with GSK3 phosphorylation and result in stabilization and nuclear accumulation of the protein (Moreno-Bueno et al, 2002; Taniguchi et al, 2002; reviewed in Polakis, 2012). T41 mutations have been identified in cancers of the liver and brain, as well as in the pituitary, endometrium, large intestine and skin, among others (reviewed in Polakis, 2000; Saito-Diaz et al, 2013)
IQGAPs constitute a family of scaffolding proteins characterized by a calponin homology (CH) domain, a polyproline binding region (WW domain), a tandem of four IQ (isoleucine and glutamine-rich) repeats and a RAS GTPase-activating protein-related domain (GRD). Three IQGAPs have been identified in human, IQGAP1, IQGAP2 and IQGAP3. The best characterized is IQGAP1 and over 90 proteins have been reported to bind to it. IQGAPs integrate multiple signaling pathways and coordinate a large variety of cellular activities (White et al. 2012). IQGAP proteins IQGAP1, IQGAP2 and IQGAP3, bind activated RHO GTPases RAC1 and CDC42 via their GRD and stabilize them in their GTP-bound state (Kuroda et al. 1996, Swart-Mataraza et al. 2002, Wang et al. 2007). IQGAPs bind F-actin filaments via the CH domain and modulate cell shape and motility through regulation of G-actin/F-actin equilibrium (Brill et al. 1996, Fukata et al. 1997, Bashour et al. 1997, Wang et al. 2007, Pelikan-Conchaudron et al. 2011). Binding of IQGAPs to F-actin is inhibited by calmodulin binding to the IQ repeats (Bashour et al. 1997, Pelikan-Conchaudron et al. 2011). Based on IQGAP1 studies, IQGAPs presumably function as homodimers (Bashour et al. 1997).
IQGAP1 is involved in the regulation of adherens junctions through its interaction with E-cadherin (CDH1) and catenins (CTTNB1 and CTTNA1) (Kuroda et al. 1998, Hage et al. 2009). IQGAP1 contributes to cell polarity and lamellipodia formation through its interaction with microtubules (Fukata et al. 2002, Suzuki and Takahashi 2008)
The pathogenic bacteria Listeria monocytogenes can enter host cells through endocytosis triggered by binding of the bacterial cell wall protein internalin (InlA) to the E-cadherin (CDH1) complex at the host cell plasma membrane (Mengaud et al. 1996, Lecuit et al. 1999). Binding of InlA to CDH1, similar to CDH1 engagement during normal cell-to-cell adhesion, triggers activation of the SRC protein tyrosine kinase and phosphorylation of CDH1 and CDH1-bound beta-catenin (CTNNB1) (Fujita et al. 2002, McLachlan et al. 2007, Sousa et al. 2007, Bonazzi et al. 2008). Integrins likely contribute to CDH1-triggered SRC activation, and ERKs (MAPK1 and MAPK3), ROCKs and MLCK may also be involved (Avizienyte et al. 2002, Avizienyte et al. 2004, Martinez-Rico et al. 2010). FAK1 (PTK2), a SRC-regulated protein tyrosine kinase, may contribute to SRC-mediated regulation of CDH1 (Avizienyte et al. 2002).Phosphorylation of CDH1 and CTNNB1 by SRC creates docking sites for a CBL-like ubiquitin protein ligase Hakai (CBLL1). CBLL1 ubiquitinates SRC-phosphorylated CDH1 and CTNNB1 upon InlA binding, as well as in the context of CDH1-mediated cell-to-cell adhesion, thus triggering CDH1 endocytosis (Fujita et al. 2002, Bonazzi et al. 2008, Mukherjee et al. 2012).CBLL1 may also undergo SRC-mediated phosphorylation and subsequent autoubiquitination (Fujita et al. 2002).Both clathrin-mediated and caveolin-mediated endocytosis are implicated in the InlA-mediated entry of Listeria monocytogenes to host cells (Veiga et al. 2007). SRC-mediated phosphorylation of cortactin and the ARP2/3 complex involved in actin polymerization is implicated in CDH1 endocytosis and Listeria monocytogenes internalization (Sousa et al. 2007, Ren et al. 2009)
RUNX3 binds to complexes of beta-catenin (CTNNB1) and TCF/LEF family members. Binding of RUNX3 to CTNNB1:TCF/LEF complexes prevents their loading onto cyclin D1 (CCND1) and MYC gene promoters and interferes with WNT signaling-mediated activation of CCND1 and MYC1 transcription. RUNX3 therefore inhibits WNT-induced cellular proliferation (Ito et al. 2008)
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation
Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, chromatin immunoprecipitation assay, confocal microscopy, pull down
association, colocalization, direct interaction, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Co-localization, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
association, direct interaction, physical, physical association
anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, proximity ligation assay, pull down, tandem affinity purification, x-ray crystallography
association, direct interaction, physical association
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation
Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, chromatin immunoprecipitation assay, confocal microscopy, pull down
association, colocalization, direct interaction, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Co-localization, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
association, direct interaction, physical, physical association
anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, proximity ligation assay, pull down, tandem affinity purification, x-ray crystallography
association, direct interaction, physical association
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, proximity ligation assay, pull down, tandem affinity purification, x-ray crystallography
association, direct interaction, physical association
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation
Affinity Capture-Western, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, chromatin immunoprecipitation assay, confocal microscopy, pull down
association, colocalization, direct interaction, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-localization, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, protein kinase assay, proximity ligation assay, proximity-dependent biotin identification, tandem affinity purification
association, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Co-localization, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, pull down, tandem affinity purification
association, direct interaction, physical, physical association