241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Serine/threonine-protein kinase that acts downstream ofmTOR signaling in response to growth factors and nutrients topromote cell proliferation, cell growth and cell cycleprogression Regulates protein synthesis through phosphorylationof EIF4B, RPS6 and EEF2K, and contributes to cell survival byrepressing the pro-apoptotic function of BAD Under conditions ofnutrient depletion, the inactive form associates with the EIF3translation initiation complex Upon mitogenic stimulation,phosphorylation by the mammalian target of rapamycin complex 1(mTORC1) leads to dissociation from the EIF3 complex andactivation The active form then phosphorylates and activatesseveral substrates in the pre-initiation complex, including theEIF2B complex and the cap-binding complex component EIF4B Alsocontrols translation initiation by phosphorylating a negativeregulator of EIF4A, PDCD4, targeting it for ubiquitination andsubsequent proteolysis Promotes initiation of the pioneer roundof protein synthesis by phosphorylating POLDIP3/SKAR In responseto IGF1, activates translation elongation by phosphorylating EEF2kinase (EEF2K), which leads to its inhibition and thus activationof EEF2 Also plays a role in feedback regulation of mTORC2 bymTORC1 by phosphorylating RICTOR, resulting in the inhibition ofmTORC2 and AKT1 signaling Mediates cell survival byphosphorylating the pro-apoptotic protein BAD and suppressing itspro-apoptotic function Phosphorylates mitochondrial URI1 leadingto dissociation of a URI1-PPP1CC complex The free mitochondrialPPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which isproposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function Mediates TNF-alpha-induced insulin resistanceby phosphorylating IRS1 at multiple serine residues, resulting inaccelerated degradation of IRS1 In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B Maybe involved in cytoskeletal rearrangement through binding toneurabin Phosphorylates and activates the pyrimidine biosynthesisenzyme CAD, downstream of MTOR (PubMed:11500364, PubMed:12801526,PubMed:14673156, PubMed:15071500, PubMed:15341740,PubMed:16286006, PubMed:17052453, PubMed:17053147,PubMed:17936702, PubMed:18952604, PubMed:19085255,PubMed:19720745, PubMed:19935711, PubMed:19995915,PubMed:23429703) Following activation by mTORC1, phosphorylatesEPRS and thereby plays a key role in fatty acid uptake byadipocytes and also most probably in interferon-gamma-inducedtranslation inhibition (PubMed:28178239)
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. EGFR also serves as a stimulus for cancer growth. EGFR gene mutations and protein overexpression, both of which activate down- stream pathways, are associated with cancers, especially lung cancer. Several tyrosine kinase inhibitor (TKI) therapies against EGFR are currently administered and are initially effective in cancer patients who have EGFR mutations or aberrant activation of EGFR. However, the development of TKI resistance is common and results in the recurrence of tumors. Studies over the last decade have identified mechanisms that drive resistance to EGFR TKI treatment. Most outstanding mechanisms are: the secondary EGFR mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, etc.
Endocrine therapy is a key treatment strategy to control or eradicate hormone-responsive breast cancer. The most commonly used endocrine therapy agents are selective estrogen receptor modulators (SERMs, e.g. tamoxifen), estrogen synthesis inhibitors (e.g. aromatase inhibitors (AIs) such as anastrozole, letrozole, and exemestane), and selective estrogen receptor down-regulators (SERDs, e.g. fulvestrant). However, resistance to these agents has become a major clinical obstacle. Mechanisms of endocrine resistance include loss of ER-alpha expression, altered expression of coactivators or coregulators that play a critical role in ER-mediated gene transcription, ligand-independent growth factor signaling cascades that activate kinases and ER-phosphorylation, altered availability of active tamoxifen metabolites regulated by drug-metabolizing enzymes, such as CYP2D6, and deregulation of the cell cycle and apoptotic machinery.
The ErbB family of receptor tyrosine kinases (RTKs) couples binding of extracellular growth factor ligands to intracellular signaling pathways regulating diverse biologic responses, including proliferation, differentiation, cell motility, and survival. Ligand binding to the four closely related members of this RTK family -epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER1), ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4)-induces the formation of receptor homo- and heterodimers and the activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine residues (pY) within the cytoplasmic tail. Signaling effectors containing binding pockets for pY-containing peptides are recruited to activated receptors and induce the various signaling pathways. The Shc- and/or Grb2-activated mitogen-activated protein kinase (MAPK) pathway is a common target downstream of all ErbB receptors. Similarly, the phosphatidylinositol-3-kinase (PI-3K) pathway is directly or indirectly activated by most ErbBs. Several cytoplasmic docking proteins appear to be recruited by specific ErbB receptors and less exploited by others. These include the adaptors Crk, Nck, the phospholipase C gamma (PLCgamma), the intracellular tyrosine kinase Src, or the Cbl E3 ubiquitin protein ligase.
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis. It consists of two subunits: an inducibly-expressed HIF-1alpha subunit and a constitutively-expressed HIF-1beta subunit. Under normoxia, HIF-1 alpha undergoes hydroxylation at specific prolyl residues which leads to an immediate ubiquitination and subsequent proteasomal degradation of the subunit. In contrast, under hypoxia, HIF-1 alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 encode proteins that increase O2 delivery and mediate adaptive responses to O2 deprivation. Despite its name, HIF-1 is induced not only in response to reduced oxygen availability but also by other stimulants, such as nitric oxide, or various growth factors.
Autophagy (or macroautophagy) is a cellular catabolic pathway involving in protein degradation, organelle turnover, and non-selective breakdown of cytoplasmic components, which is evolutionarily conserved among eukaryotes and exquisitely regulated. This progress initiates with production of the autophagosome, a double-membrane intracellular structure of reticular origin that engulfs cytoplasmic contents and ultimately fuses with lysosomes for cargo degradation. Autophagy is regulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation and ER stress. Constitutive level of autophagy plays an important role in cellular homeostasis and maintains quality control of essential cellular components.
The mammalian (mechanistic) target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase, which exists in two complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 contains mTOR, Raptor, PRAS40, Deptor, mLST8, Tel2 and Tti1. mTORC1 is activated by the presence of growth factors, amino acids, energy status, stress and oxygen levels to regulate several biological processes, including lipid metabolism, autophagy, protein synthesis and ribosome biogenesis. On the other hand, mTORC2, which consists of mTOR, mSin1, Rictor, Protor, Deptor, mLST8, Tel2 and Tti1, responds to growth factors and controls cytoskeletal organization, metabolism and survival.
The phosphatidylinositol 3' -kinase(PI3K)-Akt signaling pathway is activated by many types of cellular stimuli or toxic insults and regulates fundamental cellular functions such as transcription, translation, proliferation, growth, and survival. The binding of growth factors to their receptor tyrosine kinase (RTK) or G protein-coupled receptors (GPCR) stimulates class Ia and Ib PI3K isoforms, respectively. PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) at the cell membrane. PIP3 in turn serves as a second messenger that helps to activate Akt. Once active, Akt can control key cellular processes by phosphorylating substrates involved in apoptosis, protein synthesis, metabolism, and cell cycle.
AMP-activated protein kinase (AMPK) is a serine threonine kinase that is highly conserved through evolution. AMPK system acts as a sensor of cellular energy status. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Several upstream kinases, including liver kinase B1 (LKB1), calcium/calmodulin kinase kinase-beta (CaMKK beta), and TGF-beta-activated kinase-1 (TAK-1), can activate AMPK by phosphorylating a threonine residue on its catalytic alpha-subunit. Once activated, AMPK leads to a concomitant inhibition of energy-consuming biosynthetic pathways, such as protein, fatty acid and glycogen synthesis, and activation of ATP-producing catabolic pathways, such as fatty acid oxidation and glycolysis.
Regulation of longevity depends on genetic and environmental factors. Caloric restriction (CR), that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan. Four pathways have been implicated in mediating the CR effect. These are the insulin like growth factor (IGF-1)/insulin signaling pathway, the sirtuin pathway, the adenosine monophosphate (AMP) activated protein kinase (AMPK) pathway and the target of rapamycin (TOR) pathway. The collective response of these pathways to CR is believed to promote cellular fitness and ultimately longevity via activation of autophagy, stress defense mechanisms, and survival pathways while attenuating proinflammatory mediators and cellular growth. Furthermore, there is evidence supporting that life span extension can be achieved with pharmacologic agents that mimic the effects of caloric restriction, such as rapamycin, via mTOR signaling blockade, resveratrol, by activating SIRT1 activity, and metformin, which seems to be a robust stimulator of AMPK activity. As an aging suppressor, Klotho is an important molecule in aging processes and its overexpression results in longevity.
Aging is a complex process of accumulation of molecular, cellular, and organ damage, leading to loss of function and increased vulnerability to disease and death. Despite the complexity of aging, recent work has shown that dietary restriction (DR) and genetic down-regulation of nutrient-sensing pathways, namely IIS (insulin/insulin-like growth factor signalling) and TOR (target-of- rapamycin) can substantially increase healthy life span of laboratory model organisms. These nutrient signaling pathways are conserved in various organisms. In worms, flies, and mammals, DR reduces signalling through IIS/TOR pathways, deactivating the PI3K/Akt/TOR intracellular signalling cascade and consequently activating the antiaging FOXO family transcription factor(s). In yeast, the effects of DR on life- span extension are associated with reduced activities of the TOR/Sch9 and Ras/PKA pathways and require the serine-threonine kinase Rim15 and transcription factors Gis1 and Msn2/4. These transcription factors (FOXO, DAF-16, Gis1, and Msn2/4) transactivate genes involved in resistance to oxidative stress, energy metabolism, DNA damage repair, glucose metabolism, autophagy and protection of proteins by chaperones.
The transforming growth factor-beta (TGF-beta) family members, which include TGF-betas, activins and bone morphogenetic proteins (BMPs), are structurally related secreted cytokines found in species ranging from worms and insects to mammals. A wide spectrum of cellular functions such as proliferation, apoptosis, differentiation and migration are regulated by TGF-beta family members. TGF-beta family member binds to the Type II receptor and recruits Type I, whereby Type II receptor phosphorylates and activates Type I. The Type I receptor, in turn, phosphorylates receptor-activated Smads ( R-Smads: Smad1, Smad2, Smad3, Smad5, and Smad8). Once phosphorylated, R-Smads associate with the co-mediator Smad, Smad4, and the heteromeric complex then translocates into the nucleus. In the nucleus, Smad complexes activate specific genes through cooperative interactions with other DNA-binding and coactivator (or co-repressor) proteins.
Apelin is an endogenous peptide capable of binding the apelin receptor (APJ), which was originally described as an orphan G-protein-coupled receptor. Apelin and APJ are widely expressed in various tissues and organ systems. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, cell proliferation and energy metabolism regulation. On the other hand, this ligand receptor couple is also involved in several pathologies including diabetes, obesity, cardiovascular disease and cancer.
Phagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes.
Thermogenesis is essential for warm-blooded animals, ensuring normal cellular and physiological function under conditions of environmental challenge. Thermogenesis in brown and beige adipose tissue is mainly controlled by norepinephrine, which is released from sympathetic nervous system in response to cold or dietary stimuli. The mitochondrial uncoupling protein 1 (UCP1) is responsible for the process whereby chemical energy is converted into heat in these adipocytes. Activation of these adipocytes leads to an increase in calorie consumption and is expected to improve overweight conditions, providing a potential strategy for treating obesity and its related metabolic disorders.
Insulin binding to its receptor results in the tyrosine phosphorylation of insulin receptor substrates (IRS) by the insulin receptor tyrosine kinase (INSR). This allows association of IRSs with the regulatory subunit of phosphoinositide 3-kinase (PI3K). PI3K activates 3-phosphoinositide-dependent protein kinase 1 (PDK1), which activates Akt, a serine kinase. Akt in turn deactivates glycogen synthase kinase 3 (GSK-3), leading to activation of glycogen synthase (GYS) and thus glycogen synthesis. Activation of Akt also results in the translocation of GLUT4 vesicles from their intracellular pool to the plasma membrane, where they allow uptake of glucose into the cell. Akt also leads to mTOR-mediated activation of protein synthesis by eIF4 and p70S6K. The translocation of GLUT4 protein is also elicited through the CAP/Cbl/TC10 pathway, once Cbl is phosphorylated by INSR.Other signal transduction proteins interact with IRS including GRB2. GRB2 is part of the cascade including SOS, RAS, RAF and MEK that leads to activation of mitogen-activated protein kinase (MAPK) and mitogenic responses in the form of gene transcription. SHC is another substrate of INSR. When tyrosine phosphorylated, SHC associates with GRB2 and can thus activate the RAS/MAPK pathway independently of IRS-1.
Insulin resistance is a condition where cells become resistant to the effects of insulin. It is often found in people with health disorders, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. In this diagram multiple mechanisms underlying insulin resistance are shown: (a) increased phosphorylation of IRS (insulin receptor substrate) protein through serine/threonine kinases, such as JNK1 and IKKB, and protein kinase C, (b) increased IRS-1 proteasome degradation via mTOR signaling pathway, (c) decreased activation of signaling molecules including PI3K and AKT, (d) increase in activity of phosphatases including PTPs, PTEN, and PP2A. Regulatory actions such as oxidative stress, mitochondrial dysfunction, accumulation of intracellular lipid derivatives (diacylglycrol and ceramides), and inflammation (via IL-6 and TNFA) contribute to these mechanisms. Consequently, insulin resistance causes reduced GLUT4 translocation, resulting in glucose takeup and glycogen synthesis in skeletal muscle as well as increased hepatic gluconeogenesis and decreased glycogen synthesis in liver. At the bottom of the diagram, interplay between O-GlcNAcylation and serine/threonine phosphorylation is shown. Studies suggested that elevated O-GlcNAc level was correlated to high glucose-induced insulin resistance. Donor UDP-GlcNAc is induced through hexosamine biosynthesis pathway and added to proteins by O-GlcNAc transferase. Elevation of O-GlcNAc modification alters phosphorylation and function of key insulin signaling proteins including IRS-1, PI3K, PDK1, Akt and other transcription factor and cofactors, resulting in the attenuation of insulin signaling cascade.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Human papillomavirus (HPV) is a non-enveloped, double-stranded DNA virus. HPV infect mucoal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. All types of HPV share a common genomic structure and encode eight proteins: E1, E2, E4, E5, E6, and E7 (early) and L1 and L2 (late). It has been demonstrated that E1 and E2 are involved in viral transcription and replication. The functions of the E4 protein is not yet fully understood. E5, E6, and E7 act as oncoproteins. E5 inhibits the V-ATPase, prolonging EGFR signaling and thereby promoting cell proliferation. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways. Among these pathways, PI3K/Akt signalling cascade plays a very important role in HPV-induced carcinogenesis. The L1 and L2 proteins form icosahedral capsids for progeny virion generation.
Human immunodeficiency virus type 1 (HIV-1) , the causative agent of AIDS (acquired immunodeficiency syndrome), is a lentivirus belonging to the Retroviridae family. The primary cell surface receptor for HIV-1, the CD4 protein, and the co-receptor for HIV-1, either CCR5 or CXCR4, are found on macrophages and T lymphocytes. At the earliest step, sequential binding of virus envelope (Env) glycoprotein gp120 to CD4 and the co-receptor CCR5 or CXCR4 facilitates HIV-1 entry and has the potential to trigger critical signaling that may favor viral replication. At advanced stages of the disease, HIV-1 infection results in dramatic induction of T-cell (CD4+ T and CD8+ T cell) apoptosis both in infected and uninfected bystander T cells, a hallmark of HIV-1 pathogenesis. On the contrary, macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time.
Many proteoglycans (PGs) in the tumor microenvironment have been shown to be key macromolecules that contribute to biology of various types of cancer including proliferation, adhesion, angiogenesis and metastasis, affecting tumor progress. The four main types of proteoglycans include hyaluronan (HA), which does not occur as a PG but in free form, heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), dematan sulfate proteoglycans (DSPG) and keratan sulfate proteoglycans (KSPGs) [BR:00535]. Among these proteoglycans such as HA, acting with CD44, promotes tumor cell growth and migration, whereas other proteoglycans such as syndecans (-1~-4), glypican (-1, -3) and perlecan may interact with growth factors, cytokines, morphogens and enzymes through HS chains [BR: 00536], also leading to tumor growth and invasion. In contrast, some of the small leucine-rich proteolgycans, such as decorin and lumican, can function as tumor repressors, and modulate the signaling pathways by the interaction of their core proteins and multiple receptors.
Colorectal cancer (CRC) is the second largest cause of cancer-related deaths in Western countries. CRC arises from the colorectal epithelium as a result of the accumulation of genetic alterations in defined oncogenes and tumour suppressor genes (TSG). Two major mechanisms of genomic instability have been identified in sporadic CRC progression. The first, known as chromosomal instability (CIN), results from a series of genetic changes that involve the activation of oncogenes such as K-ras and inactivation of TSG such as p53, DCC/Smad4, and APC. The second, known as microsatellite instability (MSI), results from inactivation of the DNA mismatch repair genes MLH1 and/or MSH2 by hypermethylation of their promoter, and secondary mutation of genes with coding microsatellites, such as transforming growth factor receptor II (TGF-RII) and BAX. Hereditary syndromes have germline mutations in specific genes (mutation in the tumour suppressor gene APC on chromosome 5q in FAP, mutated DNA mismatch repair genes in HNPCC).
Infiltrating ductal adenocarcinoma is the most common malignancy of the pancreas. When most investigators use the term 'pancreatic cancer' they are referring to pancreatic ductal adenocarcinoma (PDA). Normal duct epithelium progresses to infiltrating cancer through a series of histologically defined precursors (PanINs). The overexpression of HER-2/neu and activating point mutations in the K-ras gene occur early, inactivation of the p16 gene at an intermediate stage, and the inactivation of p53, SMAD4, and BRCA2 occur relatively late. Activated K-ras engages multiple effector pathways. Although EGF receptors are conventionally regarded as upstream activators of RAS proteins, they can also act as RAS signal transducers via RAS-induced autocrine activation of the EGFR family ligands. Moreover, PDA shows extensive genomic instability and aneuploidy. Telomere attrition and mutations in p53 and BRCA2 are likely to contribute to these phenotypes. Inactivation of the SMAD4 tumour suppressor gene leads to loss of the inhibitory influence of the transforming growth factor-beta signalling pathway.
Acute myeloid leukemia (AML) is a disease that is characterized by uncontrolled proliferation of clonal neoplastic cells and accumulation in the bone marrow of blasts with an impaired differentiation program. AML accounts for approximately 80% of all adult leukemias and remains the most common cause of leukemia death. Two major types of genetic events have been described that are crucial for leukemic transformation. A proposed necessary first event is disordered cell growth and upregulation of cell survival genes. The most common of these activating events were observed in the RTK Flt3, in N-Ras and K-Ras, in Kit, and sporadically in other RTKs. Alterations in myeloid transcription factors governing hematopoietic differentiation provide second necessary event for leukemogenesis. Transcription factor fusion proteins such as AML-ETO, PML-RARalpha or PLZF-RARalpha block myeloid cell differentiation by repressing target genes. In other cases, the transcription factors themselves are mutated.
Breast cancer is the leading cause of cancer death among women worldwide. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. The molecular subtypes of breast cancer, which are based on the presence or absence of hormone receptors (estrogen and progesterone subtypes) and human epidermal growth factor receptor-2 (HER2), include: hormone receptor positive and HER2 negative (luminal A subtype), hormone receptor positive and HER2 positive (luminal B subtype), hormone receptor negative and HER2 positive (HER2 positive), and hormone receptor negative and HER2 negative (basal-like or triple-negative breast cancers (TNBCs)). Hormone receptor positive breast cancers are largely driven by the estrogen/ER pathway. In HER2 positive breast tumours, HER2 activates the PI3K/AKT and the RAS/RAF/MAPK pathways, and stimulate cell growth, survival and differentiation. In patients suffering from TNBC, the deregulation of various signalling pathways (Notch and Wnt/beta-catenin), EGFR protein have been confirmed. In the case of breast cancer only 8% of all cancers are hereditary, a phenomenon linked to genetic changes in BRCA1 or BRCA2. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers.
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and one of the rare human neoplasms etiologically linked to viral factors. It has been shown that, after HBV/HCV infection and alcohol or aflatoxin B1 exposure, genetic and epigenetic changes occur. The recurrent mutated genes were found to be highly enriched in multiple key driver signaling processes, including telomere maintenance, TP53, cell cycle regulation, the Wnt/beta-catenin pathway (CTNNB1 and AXIN1), the phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Recent studies using whole-exome sequencing have revealed recurrent mutations in new driver genes involved in the chromatin remodelling (ARID1A and ARID2) and the oxidative stress (NFE2L2) pathways.
Gastric cancer (GC) is one of the world's most common cancers. According to Lauren's histological classification gastric cancer is divided into two distinct histological groups - the intestinal and diffuse types. Several genetic changes have been identified in intestinal-type GC. The intestinal metaplasia is characterized by mutations in p53 gene, reduced expression of retinoic acid receptor beta (RAR-beta) and hTERT expression. Gastric adenomas furthermore display mutations in the APC gene, reduced p27 expression and cyclin E amplification. In addition, amplification and overexpression of c-ErbB2, reduced TGF-beta receptor type I (TGFBRI) expression and complete loss of p27 expression are commonly observed in more advanced GC. The main molecular changes observed in diffuse-type GCs include loss of E-cadherin function by mutations in CDH1 and amplification of MET and FGFR2F.
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, oncogenic signalling via pathways such as the RAS and PI3K-AKT pathways, and transcription factors associated with oncogenesis such as hypoxia-inducible factor 1 (HIF1) mediate overexpression and activation of choline cycle enzymes, which causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These products of choline phospholipid metabolism, such as phosphocholine (PCho), diacylglycerol (DAG) and phosphatidic acid, may function as second messengers that are essential for the mitogenic activity of growth factors, particularly in the activation of the ras-raf-1-MAPK cascade and protein kinase C pathway.
mTORC1 integrates four major signals – growth factors, energy status, oxygen and amino acids – to regulate many processes that are involved in the promotion of cell growth. Growth factors stimulate mTORC1 through the activation of the canonical insulin and Ras signaling pathways. The energy status of the cell is signaled to mTORC1 through AMP-activated protein kinase (AMPK), a key sensor of intracellular energy status (Hardie 2007). Energy depletion (low ATP:ADP ratio) activates AMPK which phosphorylates TSC2, increasing its GAP activity towards Rheb which reduces mTORC1 activation (Inoki et al. 2003). AMPK can reduce mTORC1 activity by directly phosphorylating Raptor (Gwinn et al. 2008). Amino acids positively regulate mTORC1 (reviewed by Guertin & Sabatini 2007). In the presence of amino acids, Rag proteins bind Raptor to promote the relocalization of mTORC1 from the cytoplasm to lysosomal membranes (Puertollano 2014) where it is activated by Rheb (Saucedo et al. 2003, Stocker et al. 2003). Translocation of mTOR to the lysosome requires active Rag GTPases and a complex known as Ragulator, a pentameric protein complex that anchors the Rag GTPases to lysosomes (Sancak et al. 2008, 2010, Bar-Peled et al. 2012). Rag proteins function as heterodimers, consisting of GTP-bound RagA or RagB complexed with GDP-bound RagC or RagD. Amino acids may trigger the GTP loading of RagA/B, thereby promoting binding to raptor and assembly of an activated mTORC1 complex, though a recent study suggested that the activation of mTORC1 is not dependent on Rag GTP charging (Oshiro et al. 2014). \n\nThe activity of Rheb is regulated by a complex consisting of tuberous sclerosis complex 1 (TSC1), TSC2, and TBC1 domain family member 7 (TBC1D7) (Huang et al. 2008, Dibble et al. 2012). This complex localizes to lysosomes and functions as a GTPase-activating protein (GAP) that inhibits the activity of Rheb (Menon et al. 2014, Demetriades et al. 2014). In the presence of growth factors or insulin, TSC releases its inhibitory activity on Rheb, thus allowing the activation of mTORC1