241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm, cytoskeleton Cell junction, focal adhesionCytoplasm, cell cortex Note=Colocalizes with integrins at the cell periphery Colocalizewith PXN to membrane ruffles and the leading edge of migratingcells (PubMed:23128389)
Function (UniProt annotation)
Cytoskeletal protein involved in actin-membraneattachment at sites of cell adhesion to the extracellular matrix(focal adhesion)
Inflammatory immune response requires the recruitment of leukocytes to the site of inflammation upon foreign insult. Chemokines are small chemoattractant peptides that provide directional cues for the cell trafficking and thus are vital for protective host response. In addition, chemokines regulate plethora of biological processes of hematopoietic cells to lead cellular activation, differentiation and survival.The chemokine signal is transduced by chemokine receptors (G-protein coupled receptors) expressed on the immune cells. After receptor activation, the alpha- and beta-gamma-subunits of G protein dissociate to activate diverse downstream pathways resulting in cellular polarization and actin reorganization. Various members of small GTPases are involved in this process. Induction of nitric oxide and production of reactive oxygen species are as well regulated by chemokine signal via calcium mobilization and diacylglycerol production.
There is now much evidence that VEGFR-2 is the major mediator of VEGF-driven responses in endothelial cells and it is considered to be a crucial signal transducer in both physiologic and pathologic angiogenesis. The binding of VEGF to VEGFR-2 leads to a cascade of different signaling pathways, resulting in the up-regulation of genes involved in mediating the proliferation and migration of endothelial cells and promoting their survival and vascular permeability. For example, the binding of VEGF to VEGFR-2 leads to dimerization of the receptor, followed by intracellular activation of the PLCgamma;PKC-Raf kinase-MEK-mitogen-activated protein kinase (MAPK) pathway and subsequent initiation of DNA synthesis and cell growth, whereas activation of the phosphatidylinositol 3' -kinase (PI3K)-Akt pathway leads to increased endothelial-cell survival. Activation of PI3K, FAK, and p38 MAPK is implicated in cell migration signaling.
Cell-matrix adhesions play essential roles in important biological processes including cell motility, cell proliferation, cell differentiation, regulation of gene expression and cell survival. At the cell-extracellular matrix contact points, specialized structures are formed and termed focal adhesions, where bundles of actin filaments are anchored to transmembrane receptors of the integrin family through a multi-molecular complex of junctional plaque proteins. Some of the constituents of focal adhesions participate in the structural link between membrane receptors and the actin cytoskeleton, while others are signalling molecules, including different protein kinases and phosphatases, their substrates, and various adapter proteins. Integrin signaling is dependent upon the non-receptor tyrosine kinase activities of the FAK and src proteins as well as the adaptor protein functions of FAK, src and Shc to initiate downstream signaling events. These signalling events culminate in reorganization of the actin cytoskeleton; a prerequisite for changes in cell shape and motility, and gene expression. Similar morphological alterations and modulation of gene expression are initiated by the binding of growth factors to their respective receptors, emphasizing the considerable crosstalk between adhesion- and growth factor-mediated signalling.
Leukocyte migaration from the blood into tissues is vital for immune surveillance and inflammation. During this diapedesis of leukocytes, the leukocytes bind to endothelial cell adhesion molecules (CAM) and then migrate across the vascular endothelium. A leukocyte adherent to CAMs on the endothelial cells moves forward by leading-edge protrusion and retraction of its tail. In this process, alphaL /beta2 integrin activates through Vav1, RhoA, which subsequently activates the kinase p160ROCK. ROCK activation leads to MLC phosphorylation, resulting in retraction of the actin cytoskeleton. Moreover, Leukocytes activate endothelial cell signals that stimulate endothelial cell retraction during localized dissociation of the endothelial cell junctions. ICAM-1-mediated signals activate an endothelial cell calcium flux and PKC, which are required for ICAM-1 dependent leukocyte migration. VCAM-1 is involved in the opening of the endothelial passagethrough which leukocytes can extravasate. In this regard, VCAM-1 ligation induces NADPH oxidase activation and the production of reactive oxygen species (ROS) in a Rac-mediated manner, with subsequent activation of matrix metallopoteinases and loss of VE-cadherin-mediated adhesion.
Many pathogenic bacteria can invade phagocytic and non-phagocytic cells and colonize them intracellularly, then become disseminated to other cells. Invasive bacteria induce their own uptake by non-phagocytic host cells (e.g. epithelial cells) using two mechanisms referred to as zipper model and trigger model. Listeria, Staphylococcus, Streptococcus, and Yersinia are examples of bacteria that enter using the zipper model. These bacteria express proteins on their surfaces that interact with cellular receptors, initiating signalling cascades that result in close apposition of the cellular membrane around the entering bacteria. Shigella and Salmonella are the examples of bacteria entering cells using the trigger model. These bacteria use type III secretion systems to inject protein effectors that interact with the actin cytoskeleton.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Human papillomavirus (HPV) is a non-enveloped, double-stranded DNA virus. HPV infect mucoal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. All types of HPV share a common genomic structure and encode eight proteins: E1, E2, E4, E5, E6, and E7 (early) and L1 and L2 (late). It has been demonstrated that E1 and E2 are involved in viral transcription and replication. The functions of the E4 protein is not yet fully understood. E5, E6, and E7 act as oncoproteins. E5 inhibits the V-ATPase, prolonging EGFR signaling and thereby promoting cell proliferation. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways. Among these pathways, PI3K/Akt signalling cascade plays a very important role in HPV-induced carcinogenesis. The L1 and L2 proteins form icosahedral capsids for progeny virion generation.
Human immunodeficiency virus type 1 (HIV-1) , the causative agent of AIDS (acquired immunodeficiency syndrome), is a lentivirus belonging to the Retroviridae family. The primary cell surface receptor for HIV-1, the CD4 protein, and the co-receptor for HIV-1, either CCR5 or CXCR4, are found on macrophages and T lymphocytes. At the earliest step, sequential binding of virus envelope (Env) glycoprotein gp120 to CD4 and the co-receptor CCR5 or CXCR4 facilitates HIV-1 entry and has the potential to trigger critical signaling that may favor viral replication. At advanced stages of the disease, HIV-1 infection results in dramatic induction of T-cell (CD4+ T and CD8+ T cell) apoptosis both in infected and uninfected bystander T cells, a hallmark of HIV-1 pathogenesis. On the contrary, macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time.
There is a strong association between viruses and the development of human malignancies. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Via expression of many potent oncoproteins, these tumor viruses promote an aberrant cell-proliferation via modulating cellular cell-signaling pathways and escape from cellular defense system such as blocking apoptosis. Human tumor virus oncoproteins can also disrupt pathways that are necessary for the maintenance of the integrity of host cellular genome. Viruses that encode such activities can contribute to initiation as well as progression of human cancers.
Many proteoglycans (PGs) in the tumor microenvironment have been shown to be key macromolecules that contribute to biology of various types of cancer including proliferation, adhesion, angiogenesis and metastasis, affecting tumor progress. The four main types of proteoglycans include hyaluronan (HA), which does not occur as a PG but in free form, heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), dematan sulfate proteoglycans (DSPG) and keratan sulfate proteoglycans (KSPGs) [BR:00535]. Among these proteoglycans such as HA, acting with CD44, promotes tumor cell growth and migration, whereas other proteoglycans such as syndecans (-1~-4), glypican (-1, -3) and perlecan may interact with growth factors, cytokines, morphogens and enzymes through HS chains [BR: 00536], also leading to tumor growth and invasion. In contrast, some of the small leucine-rich proteolgycans, such as decorin and lumican, can function as tumor repressors, and modulate the signaling pathways by the interaction of their core proteins and multiple receptors.
GAB1 is recruited to the activated EGFR indirectly, through GRB2. GAB1 acts as an adaptor protein that enables formation of an active PIK3, through recruitment of PIK3 regulatory subunit PIK3R1 (also known as PI3Kp85), which subsequently recruits PIK3 catalytic subunit PIK3CA (also known as PI3Kp110). PIK3, in complex with EGFR, GRB2 and GAB1, catalyzes phosphorylation of PIP2 and its conversion to PIP3, which leads to the activation of the AKT signaling
Angiogenesis is the formation of new blood vessels from preexisting vasculature. One of the most important proangiogenic factors is vascular endothelial growth factor (VEGF). VEGF exerts its biologic effect through interaction with transmembrane tyrosine kinase receptors VEGFR, selectively expressed on vascular endothelial cells. VEGFA signaling through VEGFR2 is the major pathway that activates angiogenesis by inducing the proliferation, survival, sprouting and migration of endothelial cells (ECs), and also by increasing endothelial permeability (Lohela et al. 2009, Shibuya & Claesson-Welsh 2006, Claesson-Welsh & Welsh, 2013). The critical role of VEGFR2 in vascular development is highlighted by the fact that VEGFR2-/- mice die at E8.5-9.5 due to defective development of blood islands, endothelial cells and haematopoietic cells (Shalaby et al. 1995)
Layers of smooth muscle cells can be found in the walls of numerous organs and tissues within the body. Smooth muscle tissue lacks the striated banding pattern characteristic of skeletal and cardiac muscle. Smooth muscle is triggered to contract by the autonomic nervous system, hormones, autocrine/paracrine agents, local chemical signals, and changes in load or length.\nActin:myosin cross bridging is used to develop force with the influx of calcium ions (Ca2+) initiating contraction. Two separate protein pathways, both triggered by calcium influx contribute to contraction, a calmodulin driven kinase pathway, and a caldesmon driven pathway.\nRecent evidence suggests that actin, myosin, and intermediate filaments may be far more volatile then previously suspected, and that changes in these cytoskeletal elements along with alterations of the focal adhesions that anchor these proteins may contribute to the contractile cycle.\nContraction in smooth muscle generally uses a variant of the same sliding filament model found in striated muscle, except in smooth muscle the actin and myosin filaments are anchored to focal adhesions, and dense bodies, spread over the surface of the smooth muscle cell. When actin and myosin move across one another focal adhesions are drawn towards dense bodies, effectively squeezing the cell into a smaller conformation. The sliding is triggered by calcium:caldesmon binding, caldesmon acting in an analogous fashion to troponin in striated muscle. Phosphorylation of myosin light chains also is involved in the initiation of an effective contraction
The interactions among ILK, PINCH, and parvins are necessary but not sufficient for localization of ILK to cell-ECM adhesions (Zhang et al., 2002). Additional proteins that interact with PINCH-ILK-parvin complex components likely participate in mediating its localization (reviewed in Wu, 2004)
The PINCH-ILK-Parvin complexes function in transducing diverse signals from ECM to intracellular effectors. Interacting partners for components of these complexes have been identified, a number of which regulate and/or mediate its functions in cytoskeletal remodeling and cell spreading (reviewed in Wu, 2004)
PTK6 promotes cell motility and migration by regulating the activity of RHO GTPases RAC1 (Chen et al. 2004) and RHOA (Shen et al. 2008). PTK6 inhibits RAS GTPase activating protein RASA1 (Shen et al. 2008) and may be involved in MAPK7 (ERK5) activation (Ostrander et al. 2007, Zheng et al
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, confocal microscopy, far western blotting, fluorescence microscopy, pull down
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, confocal microscopy, far western blotting, fluorescence microscopy, pull down
Affinity Capture-Western, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, confocal microscopy, far western blotting, fluorescence microscopy, pull down