241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Nucleus Cytoplasm Cytoplasm, cytoskeleton Note=Binds to microtubules
Function (UniProt annotation)
Dual specificity protein kinase which acts as anessential component of the MAP kinase signal transduction pathwayWith MAP3K3/MKK3, catalyzes the concomitant phosphorylation of athreonine and a tyrosine residue in the MAP kinases p38 MAPK11,MAPK12, MAPK13 and MAPK14 and plays an important role in theregulation of cellular responses to cytokines and all kinds ofstresses Especially, MAP2K3/MKK3 and MAP2K6/MKK6 are bothessential for the activation of MAPK11 and MAPK13 induced byenvironmental stress, whereas MAP2K6/MKK6 is the major MAPK11activator in response to TNF MAP2K6/MKK6 also phosphorylates andactivates PAK6 The p38 MAP kinase signal transduction pathwayleads to direct activation of transcription factors Nucleartargets of p38 MAP kinase include the transcription factors ATF2and ELK1 Within the p38 MAPK signal transduction pathway,MAP3K6/MKK6 mediates phosphorylation of STAT4 through MAPK14activation, and is therefore required for STAT4 activation andSTAT4-regulated gene expression in response to IL-12 stimulationThe pathway is also crucial for IL-6-induced SOCS3 expression anddown-regulation of IL-6-mediated gene induction; and for IFNG-dependent gene transcription Has a role in osteoclastdifferentiation through NF-kappa-B transactivation by TNFSF11, andin endochondral ossification and since SOX9 is another likelydownstream target of the p38 MAPK pathway MAP2K6/MKK6 mediatesapoptotic cell death in thymocytes Acts also as a regulator formelanocytes dendricity, through the modulation of Rho familyGTPases
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli.
Rap1 is a small GTPase that controls diverse processes, such as cell adhesion, cell-cell junction formation and cell polarity. Like all G proteins, Rap1 cycles between an inactive GDP-bound and an active GTP-bound conformation. A variety of extracellular signals control this cycle through the regulation of several unique guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types.
Cellular senescence is a state of irreversible cellular arrest and can be triggered by a number of factors, such as telomere shortening, oncogene activation, irradiation, DNA damage and oxidative stress. It is characterized by enlarged flattened morphology, senescence-associated beta-galactosidase (SA-b-gal) activity, secretion of inflammatory cytokines, growth factors and matrix metalloproteinases, as part of the senescence-associated secretory phenotype (SASP). Cellular senescence is functionally associated with many biological processes including aging, tumor suppression, placental biology, embryonic development, and wound healing.
The osteoclasts, multinucleared cells originating from the hematopoietic monocyte-macrophage lineage, are responsible for bone resorption. Osteoclastogenesis is mainly regulated by signaling pathways activated by RANK and immune receptors, whose ligands are expressed on the surface of osteoblasts. Signaling from RANK changes gene expression patterns through transcription factors like NFATc1 and characterizes the active osteoclast.
Specific families of pattern recognition receptors are responsible for detecting microbial pathogens and generating innate immune responses. Toll-like receptors (TLRs) are membrane-bound receptors identified as homologs of Toll in Drosophila. Mammalian TLRs are expressed on innate immune cells, such as macrophages and dendritic cells, and respond to the membrane components of Gram-positive or Gram-negative bacteria. Pathogen recognition by TLRs provokes rapid activation of innate immunity by inducing production of proinflammatory cytokines and upregulation of costimulatory molecules. TLR signaling pathways are separated into two groups: a MyD88-dependent pathway that leads to the production of proinflammatory cytokines with quick activation of NF-{kappa}B and MAPK, and a MyD88-independent pathway associated with the induction of IFN-beta and IFN-inducible genes, and maturation of dendritic cells with slow activation of NF-{kappa}B and MAPK.
Fc epsilon RI-mediated signaling pathways in mast cells are initiated by the interaction of antigen (Ag) with IgE bound to the extracellular domain of the alpha chain of Fc epsilon RI. The activation pathways are regulated both positively and negatively by the interactions of numerous signaling molecules. Mast cells that are thus activated release preformed granules which contain biogenic amines (especially histamines) and proteoglycans (especially heparin). The activation of phospholipase A2 causes the release of membrane lipids followed by development of lipid mediators such as leukotrienes (LTC4, LTD4 and LTE4) and prostaglandins (especially PDG2). There is also secretion of cytokines, the most important of which are TNF-alpha, IL-4 and IL-5. These mediators and cytokines contribute to inflammatory responses.
Tumor necrosis factor (TNF), as a critical cytokine, can induce a wide range of intracellular signal pathways including apoptosis and cell survival as well as inflammation and immunity. Activated TNF is assembled to a homotrimer and binds to its receptors (TNFR1, TNFR2) resulting in the trimerization of TNFR1 or TNFR2. TNFR1 is expressed by nearly all cells and is the major receptor for TNF (also called TNF-alpha). In contrast, TNFR2 is expressed in limited cells such as CD4 and CD8 T lymphocytes, endothelial cells, microglia, oligodendrocytes, neuron subtypes, cardiac myocytes, thymocytes and human mesenchymal stem cells. It is the receptor for both TNF and LTA (also called TNF-beta). Upon binding of the ligand, TNFR mediates the association of some adaptor proteins such as TRADD or TRAF2, which in turn initiate recruitment of signal transducers. TNFR1 signaling induces activation of many genes, primarily controlled by two distinct pathways, NF-kappa B pathway and the MAPK cascade, or apoptosis and necroptosis. TNFR2 signaling activates NF-kappa B pathway including PI3K-dependent NF-kappa B pathway and JNK pathway leading to survival.
The TRP channels that exhibit a unique response to temperature have been given the name thermo-TRPs. Among all thermo- TRP channels, TRPV1-4, TRPM8, and TRPA1 are expressed in subsets of nociceptive dorsal root ganglion (DRG) neuron cell bodies including their peripheral and central projections. These channels can be modulated indirectly by inflammatory mediators such as PGE2, bradykinin, ATP, NGF, and proinflammatory cytokines that are generated during tissue injury. While the noxious heat receptor TRPV1 is sensitized (that is, their excitability can be increased) by post-translational modifications upon activation of G-protein coupled receptors (GPCRs) or tyrosine kinase receptors, the receptors for inflammatory mediators, the same action appears to mainly desensitize TRPM8, the main somatic innocuous cold sensor. This aforementioned sensitization could allow the receptor to become active at body temperature, so it not only contributes toward thermal hypersensitivity but also is possibly a substrate for ongoing persistent pain.
Gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early genes.
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, degenerative disorder of motor neurons. The hallmark of this disease is the selective death of motor neurons in the brain and spinal cord, leading to paralysis of voluntary muscles. Mutant superoxide dismutase 1 (SOD1), as seen in some familial ALS (FALS) cases, is unstable, forming aggregates in the motor neuron cytoplasm, axoplasm and mitochondria. Within mitochondria, mutant SOD1 may interfere with the anti-apoptotic function of Bcl-2, affect mitochondrial import by interfering with the translocation machinery (TOM/TIM), and generate toxic free radicals (ROS). Reactive oxygen species (ROS), produced within mitochondria, inhibit the function of EAAT2, the main glial glutamate transporter protein, responsible for most of the reuptake of synaptically released glutamate. Glutamate excess increases intracellular calcium, which enhances oxidative stress and mitochondrial damage. Mutant SOD1 can also trigger oxidative reactions , which can then cause damage through the formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. Nitration may target neurofilament proteins, affecting axonal transport. Collectively, these mechanisms are predicted to disturb cellular homeostasis, ultimately triggering motor neuron death.
Toxoplasma gondii is an obligate intracellular parasite that is prevalent worldwide. The tachyzoite form acquired by oral ingestion downmodulates proinflammatory signaling pathways via various mechanisms. During early infection, nuclear translocation of NFkB is temporally blocked and p38 MAPK phosphorylation is prevented, suppressing IL-12 production. Another pathway for IL-12 induction occurs through CCR5 dependent pathway, but parasitic induction of an eicosanoid LXA4 contributes to the downregulation of IL-12. Direct activation of STAT3 by the parasite enhance anti-inflammatory function of IL-10 and TGF beta. T. gondii can cause lifelong chronic infection by establishing an anti-apoptotic environment through induction of bcl-2 or IAPs and by redirecting LDL-mediated cholesterol transport to scavenge nutrients from the host.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Influenza is a contagious respiratory disease caused by influenza virus infection. Influenza A virus is responsible for both annual seasonal epidemics and periodic worldwide pandemics. Novel strains that cause pandemics arise from avian influenza virus by genetic reassortment among influenza viruses and two surface glycoproteins HA and NA form the basis of serologically distinct virus types. The innate immune system recognizes invaded virus through multiple mechanisms. Viral non-structural NS1 protein is a multifunctional virulence factor that interfere IFN-mediated antiviral response. It inhibits IFN production by blocking activation of transcription factors such as NF-kappa B, IRF3 and AP1. NS1 further inhibits the activation of IFN-induced antiviral genes. PB1-F2 protein is another virulence factor that induce apoptosis of infected cells, which results in life-threatening bronchiolitis.
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus, and is associated with the pathogenesis of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). Like all other herpesviruses, KSHV displays two modes of life cycle, latency and lytic replication, which are characterized by the patterns of viral gene expression. Genes expressed in latency (LANA, v-cyclin, v-FLIP, Kaposins A, B and C and viral miRNAs) are mainly thought to facilitate the establishment of life long latency in its host and survival against the host innate, and adaptive immune surveillance mechanisms. Among the viral proteins shown to be expressed during lytic replication are potent signaling molecules such as vGPCR, vIL6, vIRFs, vCCLs, K1 and K15, which have been implicated experimentally in the angiogenic and inflammatory phenotype observed in KS lesions. Several of these latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of severe human malignancies.
Epstein-Barr virus (EBV) is a gamma-herpes virus that widely infects human populations predominantly at an early age but remains mostly asymptomatic. EBV has been linked to a wide spectrum of human malignancies, including nasopharyngeal carcinoma and other hematologic cancers, like Hodgkin's lymphoma, Burkitt's lymphoma (BL), B-cell immunoblastic lymphoma in HIV patients, and posttransplant-associated lymphoproliferative diseases. EBV has the unique ability to establish life-long latent infection in primary human B lymphocytes. During latent infection, EBV expresses a small subset of genes, including 6 nuclear antigens (EBNA-1, -2, -3A, -3B, -3C, and -LP), 3 latent membrane proteins (LMP-1, -2A, and -2B), 2 small noncoding RNAs (EBER-1 and 2). On the basis of these latent gene expression, three different latency patterns associated with the types of cancers are recognized.
Human immunodeficiency virus type 1 (HIV-1) , the causative agent of AIDS (acquired immunodeficiency syndrome), is a lentivirus belonging to the Retroviridae family. The primary cell surface receptor for HIV-1, the CD4 protein, and the co-receptor for HIV-1, either CCR5 or CXCR4, are found on macrophages and T lymphocytes. At the earliest step, sequential binding of virus envelope (Env) glycoprotein gp120 to CD4 and the co-receptor CCR5 or CXCR4 facilitates HIV-1 entry and has the potential to trigger critical signaling that may favor viral replication. At advanced stages of the disease, HIV-1 infection results in dramatic induction of T-cell (CD4+ T and CD8+ T cell) apoptosis both in infected and uninfected bystander T cells, a hallmark of HIV-1 pathogenesis. On the contrary, macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time.
Shear stress represents the frictional force that the flow of blood exerts at the endothelial surface of the vessel wall and plays a central role in vascular biology and contributes to the progress of atherosclerosis. Sustained laminar flow with high shear stress upregulates expressions of endothelial cell (EC) genes and proteins that are protective against atherosclerosis. The key shear stress-induced transcription factors that govern the expression of these genes are Kruppel-like factor 2 (KLF2) and nuclear factor erythroid 2-like 2 (Nrf2). On the other hand, disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote oxidative and inflammatory states in the artery wall, resulting in atherogenesis. Important transcriptional events that reflect this condition of ECs in disturbed flow include the activation of activator protein 1 (AP-1) and nuclear factor kappaB (NF-kappaB).
NOD1 is ubiquitously expressed, while NOD2 expression is restricted to monocytes, macrophages, dendritic cells, and intestinal Paneth cells (Inohara et al. 2005). NOD1 and NOD2 activation induces transcription of immune response genes, predominantly mediated by the proinflammatory transcriptional factor NFkappaB but also by AP-1 and Elk-1 (Inohara et al. 2005). NFkappaB translocates to the nucleus following release from IkappaB proteins. NOD1 and NOD2 signaling involves an interaction between their caspase-recruitment domain (CARD) and the CARD of the kinase RIPK2 (RIP2/RICK). This leads to the activation of the NFkappaB pathway and MAPK pathways (Windheim et al. 2007).Activated NODs oligomerize via their NACHT domains, inducing physical proximity of RIP2 proteins that is believed to trigger their K63-linked polyubiquitination, facilitating recruitment of the TAK1 complex. RIP2 also recruits NEMO, bringing the TAK1 and IKK complexes into proximity, leading to NF-kappaB activation and activation of MAPK signaling. Recent studies have demonstrated that K63-linked regulatory ubiquitination of RIP2 is essential for the recruitment of TAK1 (Hasegawa et al. 2008, Hitosumatsu et al. 2008). As observed for toll-like receptor (TLR) signaling, ubiquitination can be removed by the deubiquitinating enzyme A20, thereby dampening NOD1/NOD2-induced NF-kappaB activation. NOD1 and NOD2 both induce K63-linked ubiquitination of RIP2, but NOD2-signaling appears to preferentially utilize the E3 ligase TRAF6, while TRAF2 and TRAF5 were shown to be important for NOD1-mediated signaling. In both cases, activation of NF-kappaB results in the upregulated transcription and production of inflammatory mediators
Oxidative stress, caused by increased concentration of reactive oxygen species (ROS) in the cell, can happen as a consequence of mitochondrial dysfunction induced by the oncogenic RAS (Moiseeva et al. 2009) or independent of oncogenic signaling. Prolonged exposure to interferon-beta (IFNB, IFN-beta) also results in ROS increase (Moiseeva et al. 2006). ROS oxidize thioredoxin (TXN), which causes TXN to dissociate from the N-terminus of MAP3K5 (ASK1), enabling MAP3K5 to become catalytically active (Saitoh et al. 1998). ROS also stimulate expression of Ste20 family kinases MINK1 (MINK) and TNIK through an unknown mechanism, and MINK1 and TNIK positively regulate MAP3K5 activation (Nicke et al. 2005).
MAP3K5 phosphorylates and activates MAP2K3 (MKK3) and MAP2K6 (MKK6) (Ichijo et al. 1997, Takekawa et al. 2005), which act as p38 MAPK kinases, as well as MAP2K4 (SEK1) (Ichijo et al. 1997, Matsuura et al. 2002), which, together with MAP2K7 (MKK7), acts as a JNK kinase.
MKK3 and MKK6 phosphorylate and activate p38 MAPK alpha (MAPK14) and beta (MAPK11) (Raingeaud et al. 1996), enabling p38 MAPKs to phosphorylate and activate MAPKAPK2 (MK2) and MAPKAPK3 (MK3) (Ben-Levy et al. 1995, Clifton et al. 1996, McLaughlin et al. 1996, Sithanandam et al. 1996, Meng et al. 2002, Lukas et al. 2004, White et al. 2007), as well as MAPKAPK5 (PRAK) (New et al. 1998 and 2003, Sun et al. 2007).
Phosphorylation of JNKs (MAPK8, MAPK9 and MAPK10) by MAP3K5-activated MAP2K4 (Deacon and Blank 1997, Fleming et al. 2000) allows JNKs to migrate to the nucleus (Mizukami et al. 1997) where they phosphorylate JUN. Phosphorylated JUN binds FOS phosphorylated by ERK1 or ERK2, downstream of activated RAS (Okazaki and Sagata 1995, Murphy et al. 2002), forming the activated protein 1 (AP-1) complex (FOS:JUN heterodimer) (Glover and Harrison 1995, Ainbinder et al. 1997).
Activation of p38 MAPKs and JNKs downstream of MAP3K5 (ASK1) ultimately converges on transcriptional regulation of CDKN2A locus. In dividing cells, nucleosomes bound to the CDKN2A locus are trimethylated on lysine residue 28 of histone H3 (HIST1H3A) by the Polycomb repressor complex 2 (PRC2), creating the H3K27Me3 (Me3K-28-HIST1H3A) mark (Bracken et al. 2007, Kotake et al. 2007). The expression of Polycomb constituents of PRC2 (Kuzmichev et al. 2002) - EZH2, EED and SUZ12 - and thereby formation of the PRC2, is positively regulated in growing cells by E2F1, E2F2 and E2F3 (Weinmann et al. 2001, Bracken et al. 2003). H3K27Me3 mark serves as a docking site for the Polycomb repressor complex 1 (PRC1) that contains BMI1 (PCGF4) and is therefore named PRC1.4, leading to the repression of transcription of p16-INK4A and p14-ARF from the CDKN2A locus, where PCR1.4 mediated repression of p14-ARF transcription in humans may be context dependent (Voncken et al. 2005, Dietrich et al. 2007, Agherbi et al. 2009, Gao et al. 2012). MAPKAPK2 and MAPKAPK3, activated downstream of the MAP3K5-p38 MAPK cascade, phosphorylate BMI1 of the PRC1.4 complex, leading to dissociation of PRC1.4 complex from the CDKN2A locus and upregulation of p14-ARF transcription (Voncken et al. 2005). AP-1 transcription factor, formed as a result of MAP3K5-JNK signaling, as well as RAS signaling, binds the promoter of KDM6B (JMJD3) gene and stimulates KDM6B expression. KDM6B is a histone demethylase that removes H3K27Me3 mark i.e. demethylates lysine K28 of HIST1H3A, thereby preventing PRC1.4 binding to the CDKN2A locus and allowing transcription of p16-INK4A (Agger et al. 2009, Barradas et al. 2009, Lin et al. 2012).
p16-INK4A inhibits phosphorylation-mediated inactivation of RB family members by CDK4 and CDK6, leading to cell cycle arrest (Serrano et al. 1993). p14-ARF inhibits MDM2-mediated degradation of TP53 (p53) (Zhang et al. 1998), which also contributes to cell cycle arrest in cells undergoing oxidative stress. In addition, phosphorylation of TP53 by MAPKAPK5 (PRAK) activated downstream of MAP3K5-p38 MAPK signaling, activates TP53 and contributes to cellular senescence (Sun et al. 2007)
CDO/Cdon (cell-adhesion-molecule-related/downregulated by oncogenes) is a type I transmembrane multifunctional co-receptor consisting of five immunoglobulin and three fibronectin type III (FNIII) repeats in the extracellular domain, and an intracellular domain with no identifiable motifs. It has been implicated in enhancing muscle differentiation in promyogenic cells. CDO exert its promyogenic effects as a component of multiprotein complexes that include the closely related factor Boc, the Ig superfamily receptor neogenin and its ligand netrin-3, and the adhesion molecules N- and M-cadherin. CDO modulates the Cdc42 and p38 mitogen-activated protein kinase (MAPK) pathways via a direct association with two scaffold-type proteins, JLP and Bnip-2, to regulate activities of myogenic bHLH factors and myogenic differentiation. CDO activates myogenic bHLH factors via enhanced heterodimer formation, most likely by inducing hyper-phosphorylation of E proteins. Myogenic basic helix-loop-helix (bHLH) proteins are master regulatory proteins that activate the transcription of many muscle-specific genes during myogenesis. These myogenic bHLH proteins also referred to as MyoD family includes four members, MyoD, myogenin, myf5 and MRF4. These myogenic factors dimerize with E-proteins such as E12/E47, ITF-2 and HEB to form heterodimeric complexes that bind to a conserved DNA sequence known as the E box, which is present in the promoters and enhancers of most muscle-specific genes. Myocyte enhancer binding factor 2 (MEF2), which is a member of the MADS box family, also plays an important role in muscle differentiation. MEF2 activates transcription by binding to the consensus sequence, called the MEF2-binding site, which is also found in the control regions of numerous muscle-specific genes. MEF2 and myogenic bHLH proteins synergistically activate expression of muscle-specific genes via protein-protein interactions between DNA-binding domains of these heterologous classes of transcription factors. Members of the MyoD and MEF2 family of transcription factors associate combinatorially to control myoblast specification, differentiation and proliferation
p38 mitogen-activated protein kinase (MAPK) belongs to a highly conserved family of serine/threonine protein kinases.
The p38 MAPK-dependent signaling cascade is activated by pro-inflammatory or stressful stimuli such as ultraviolet radiation, oxidative injury, heat shock, cytokines, and other pro-inflammatory stimuli. p38 MAPK exists as four isoforms (alpha, beta, gamma, and delta). Of these, p38alpha and p38beta are ubiquitously expressed while p38gamma and p38delta are differentially expressed depending on tissue type. Each isoform is activated by upstream kinases including MAP kinase kinases (MKK) 3, 4, and 6, which in turn are phosphorylated by activated TAK1 at the typical Ser-Xaa-Ala-Xaa-Thr motif in their activation loops.
Once p38 MAPK is phosphorylated it activates numerous downstream substrates, including MAPK-activated protein kinase-2 and 3 (MAPKAPK-2 or 3) and mitogen and stress-activated kinase-1/2 (MSK1/2). MAPKAPK-2/3 and MSK1/2 function to phosphorylate heat shock protein 27 (HSP27) and cAMP-response element binding protein transcriptional factor, respectively. Other transcription factors, including activating transcription factor 2, Elk, CHOP/GADD153, and myocyte enhancer factor 2, are known to be regulated by these kinases
Bacillus anthracis bacteria target cells in an infected human through the action of three secreted bacterial proteins, LF, EF, and PA (reviews: Turk 2007; Young and Collier 2007). LF (lethal factor) is a protease that cleaves and inactivates many MAP2K (MAP kinase kinase, MEK) proteins (Duesbery et al. 1998; Vitale et al. 2000), disrupting MAP kinase signaling pathways. EF (edema factor) is an adenylate cyclase that mediates the constitutive production of cAMP (Leppla 1982), a molecule normally generated transiently in tightly regulated amounts in response to extracellular signals. Both LF and EF depend on PA (protective antigen) to enter their target cells, a strategy characteristic of bacterial binary toxins (Barth et al. 2004). PA binds to the target cell receptors, is cleaved by furin or other cellular proteases, and thereupon forms an oligomer that exposes binding sites for LF and EF molecules (review: Young and Collier 2007). This complex is taken into the target cell by clathrin mediated endocytosis and delivered to endosomes. The low pH of the endosome causes the bacterial toxin complex to rearrange: the PA oligomer forms a pore in the endosome membrane through which EF and LF molecules enter the target cell cytosol
Under conditions of cellular stress, nuclear levels of phosphatidylinositol-5-phosphate (PI5P) increase and, through interaction with ING2, result in nuclear retention/accumulation of ING2. ING2 binds TP53 (p53) and recruits histone acetyltransferase EP300 (p300) to TP53, leading to TP53 acetylation. Increased nuclear PI5P levels positively regulate TP53 acetylation (Ciruela et al. 2000, Gozani et al. 2003, Jones et al. 2006, Zou et al. 2007, Bultsma et al. 2010)
Interleukin 1 (IL1) signals via Interleukin 1 receptor 1 (IL1R1), the only signaling-capable IL1 receptor. This is a single chain type 1 transmembrane protein comprising an extracellular ligand binding domain and an intracellular region called the Toll/Interleukin-1 receptor (TIR) domain that is structurally conserved and shared by other members of the two families of receptors (Xu et al. 2000). This domain is also shared by the downstream adapter molecule MyD88. IL1 binding to IL1R1 leads to the recruitment of a second receptor chain termed the IL1 receptor accessory protein (IL1RAP or IL1RAcP) enabling the formation of a high-affinity ligand-receptor complex that is capable of signal transduction. Intracellular signaling is initiated by the recruitment of MyD88 to the IL-1R1/IL1RAP complex. IL1RAP is only recruited to IL1R1 when IL1 is present; it is believed that a TIR domain signaling complex is formed between the receptor and the adapter TIR domains. The recruitment of MyD88 leads to the recruitment of Interleukin-1 receptor-associated kinase (IRAK)-1 and -4, probably via their death domains. IRAK4 then activates IRAK1, allowing IRAK1 to autophosphorylate. Both IRAK1 and IRAK4 then dissociate from MyD88 (Brikos et al. 2007) which remains stably complexed with IL-1R1 and IL1RAP. They in turn interact with Tumor Necrosis Factor Receptor (TNFR)-Associated Factor 6 (TRAF6), which is an E3 ubiquitin ligase (Deng et al. 2000). TRAF6 is then thought to auto-ubiquinate, attaching K63-polyubiquitin to itself with the assistance of the E2 conjugating complex Ubc13/Uev1a. K63-pUb-TRAF6 recruits Transforming Growth Factor (TGF) beta-activated protein kinase 1 (TAK1) in a complex with TAK1-binding protein 2 (TAB2) and TAB3, which both contain nuclear zinc finger motifs that interact with K63-polyubiquitin chains (Ninomiya-Tsuji et al. 1999). This activates TAK1, which then activates inhibitor of NF-kappaB (IkappaB) kinase 2 (IKK2 or IKKB) within the IKK complex, the kinase responsible for phosphorylation of IkappaB. The IKK complex also contains the scaffold protein NF-kappa B essential modulator (NEMO). TAK1 also couples to the upstream kinases for p38 and c-jun N-terminal kinase (JNK). IRAK1 undergoes K63-linked polyubiquination; Pellino E3 ligases are important in this process. (Butler et al. 2007; Ordureau et al. 2008). The activity of these proteins is greatly enhanced by IRAK phosphorylation (Schauvliege et al. 2006), leading to K63-linked polyubiquitination of IRAK1. This recruits NEMO to IRAK1, with NEMO binding to polyubiquitin (Conze et al. 2008).TAK1 activates IKKB (and IKK), resulting in phosphorylation of the inhibitory IkB proteins and enabling translocation of NFkB to the nucleus; IKKB also phosphorylates NFkB p105, leading to its degradation and the subsequent release of active TPL2 that triggers the extracellular-signal regulated kinase (ERK)1/2 MAPK cascade. TAK1 can also trigger the p38 and JNK MAPK pathways via activating the upstream MKKs3, 4 and 6. The MAPK pathways activate a number of downstream kinases and transcription factors that co-operate with NFkB to induce the expression of a range of TLR/IL-1R-responsive genes. There are reports suggesting that IL1 stimulation increases nuclear localization of IRAK1 (Bol et al. 2000) and that nuclear IRAK1 binds to the promoter of NFkB-regulated gene and IkBa, enhancing binding of the NFkB p65 subunit to NFkB responsive elements within the IkBa promoter. IRAK1 is required for IL1-induced Ser-10 phosphorylation of histone H3 in vivo (Liu et al. 2008). However, details of this aspect of IRAK1 signaling mechanisms remain unclear.\nInterleukin-18 is another Interleukin-1 related cytokine which signals through IL18R and IL18RAP subunit receptors (which share homology with IL1R and IL1RAP in the cytokine signaling cascade). Later it follows a MYD88/IRAK1/TRAF6 cascade signaling until reach the NFKB activation (Moller et al. 2002). Interleukin 33, 36, 37 and 38 are relatively recently discovered Interleukin-1 related citokines which are also able to signal through IL1 receptor subunits or other as IL18R, IL37R (Schmitz et al. 2005, Yi et al. 2016, Lunding et al. 2015, van de Veendorck et al. 2012, Lin et al. 2001)