241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Tyrosine kinase of the non-receptor type, involved inthe IFN-alpha/beta/gamma signal pathway (PubMed:7615558) Kinasepartner for the interleukin (IL)-2 receptor (PubMed:11909529)
Catalytic Activity (UniProt annotation)
ATP + a [protein]-L-tyrosine = ADP + a[protein]-L-tyrosine phosphate
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. EGFR also serves as a stimulus for cancer growth. EGFR gene mutations and protein overexpression, both of which activate down- stream pathways, are associated with cancers, especially lung cancer. Several tyrosine kinase inhibitor (TKI) therapies against EGFR are currently administered and are initially effective in cancer patients who have EGFR mutations or aberrant activation of EGFR. However, the development of TKI resistance is common and results in the recurrence of tumors. Studies over the last decade have identified mechanisms that drive resistance to EGFR TKI treatment. Most outstanding mechanisms are: the secondary EGFR mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, etc.
The phosphatidylinositol 3' -kinase(PI3K)-Akt signaling pathway is activated by many types of cellular stimuli or toxic insults and regulates fundamental cellular functions such as transcription, translation, proliferation, growth, and survival. The binding of growth factors to their receptor tyrosine kinase (RTK) or G protein-coupled receptors (GPCR) stimulates class Ia and Ib PI3K isoforms, respectively. PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) at the cell membrane. PIP3 in turn serves as a second messenger that helps to activate Akt. Once active, Akt can control key cellular processes by phosphorylating substrates involved in apoptosis, protein synthesis, metabolism, and cell cycle.
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
The osteoclasts, multinucleared cells originating from the hematopoietic monocyte-macrophage lineage, are responsible for bone resorption. Osteoclastogenesis is mainly regulated by signaling pathways activated by RANK and immune receptors, whose ligands are expressed on the surface of osteoblasts. Signaling from RANK changes gene expression patterns through transcription factors like NFATc1 and characterizes the active osteoclast.
Pluripotent stem cells (PSCs) are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. The types of PSCs known to date include embryonic stem (ES) and induced pluripotent stem (iPS) cells. ES cells are derived from the inner cell mass (ICM) of blastocyst-stage embryos. iPS cells are generated by reprogramming somatic cells back to pluripotent state with defined reprogramming factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors). PSCs including ES cells and iPS cells are categorized into two groups by their morphology, gene expression profile and external signal dependence. Conventional mouse-type ES/iPS cells are called 'naive state' cells. They are mainly maintained under the control of LIF and BMP signaling. On the other hand, human-type ES/iPS cells, which are in need of Activin and FGF signaling, are termed 'primed state'. However, these signaling pathways converge towards the activation of a core transcriptional network that is similar in both groups and involves OCt4, Nanog and Sox2. The three transcription factors and their downstream target genes coordinately promote self-renewal and pluripotency.
Specific families of pattern recognition receptors are responsible for detecting various pathogens and generating innate immune responses. The intracellular NOD-like receptor (NLR) family contains more than 20 members in mammals and plays a pivotal role in the recognition of intracellular ligands. NOD1 and NOD2, two prototypic NLRs, sense the cytosolic presence of the bacterial peptidoglycan fragments that escaped from endosomal compartments, driving the activation of NF-{kappa}B and MAPK, cytokine production and apoptosis. On the other hand, a different set of NLRs induces caspase-1 activation through the assembly of multiprotein complexes called inflammasomes. The activated of caspase-1 regulates maturation of the pro-inflammatory cytokines IL-1B, IL-18 and drives pyroptosis.
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is one of a handful of pleiotropic cascades used to transduce a multitude of signals for development and homeostasis in animals, from humans to flies. In mammals, the JAK/STAT pathway is the principal signaling mechanism for a wide array of cytokines and growth factors. Following the binding of cytokines to their cognate receptor, STATs are activated by members of the JAK family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. In addition to the activation of STATs, JAKs mediate the recruitment of other molecules such as the MAP kinases, PI3 kinase etc. These molecules process downstream signals via the Ras-Raf-MAP kinase and PI3 kinase pathways which results in the activation of additional transcription factors.
Immunity to different classes of microorganisms is orchestrated by separate lineages of effector T helper (TH)-cells, which differentiate from naive CD4+ precursor cells in response to cues provided by antigen presenting cells (APC) and include T helper type 1 (Th1) and Th2. Th1 cells are characterized by the transcription factor T-bet and signal transducer and activator of transcription (STAT) 4, and the production of IFN-gamma. These cells stimulate strong cell-mediated immune responses, particularly against intracellular pathogens. On the other hand, transcription factors like GATA-3 and STAT6 drive the generation of Th2 cells that produce IL-4, IL-5 and IL-13 and are necessary for inducing the humoral response to combat parasitic helminths (type 2 immunity) and isotype switching to IgG1 and IgE. The balance between Th1/Th2 subsets determines the susceptibility to disease states, where the improper development of Th2 cells can lead to allergy, while an overactive Th1 response can lead to autoimmunity.
Interleukin (IL)-17-producing helper T (Th17) cells serve as a subset of CD4+ T cells involved in epithelial cell- and neutrophil mediated immune responses against extracellular microbes and in the pathogenesis of autoimmune diseases. In vivo, Th17 differentiation requires antigen presentation and co-stimulation, and activation of antigen presenting-cells (APCs) to produce TGF-beta, IL-6, IL-1, IL-23 and IL-21. This initial activation results in the activation and up-regulation of STAT3, ROR(gamma)t and other transcriptional factors in CD4+ T cells, which bind to the promoter regions of the IL-17, IL-21 and IL-22 genes and induce IL-17, IL-21 and IL-22. In contrast, the differentiation of Th17 cells and their IL-17 expression are negatively regulated by IL-2, Th2 cytokine IL-4, IL-27 and Th1 cytokine IFN-gamma through STAT5, STAT6 and STAT1 activation, respectively. Retinoid acid and the combination of IL-2 and TGF-beta upregulate Foxp3, which also downregulates cytokines like IL-17 and IL-21. The inhibition of Th17 differentiation may serve as a protective strategy to 'fine-tune' the expression IL-17 so it does not cause excessive inflammation. Thus, balanced differentiation of Th cells is crucial for immunity and host protection.
Leishmania is an intracellular protozoan parasite of macrophages that causes visceral, mucosal, and cutaneous diseases. The parasite is transmitted to humans by sandflies, where they survive and proliferate intracellularly by deactivating the macrophage. Successful infection of Leishmania is achieved by alteration of signaling events in the host cell, leading to enhanced production of the autoinhibitory molecules like TGF-beta and decreased induction of cytokines such as IL12 for protective immunity. Nitric oxide production is also inhibited. In addition, defective expression of major histocompatibility complex (MHC) genes silences subsequent T cell activation mediated by macrophages, resulting in abnormal immune responses.
Toxoplasma gondii is an obligate intracellular parasite that is prevalent worldwide. The tachyzoite form acquired by oral ingestion downmodulates proinflammatory signaling pathways via various mechanisms. During early infection, nuclear translocation of NFkB is temporally blocked and p38 MAPK phosphorylation is prevented, suppressing IL-12 production. Another pathway for IL-12 induction occurs through CCR5 dependent pathway, but parasitic induction of an eicosanoid LXA4 contributes to the downregulation of IL-12. Direct activation of STAT3 by the parasite enhance anti-inflammatory function of IL-10 and TGF beta. T. gondii can cause lifelong chronic infection by establishing an anti-apoptotic environment through induction of bcl-2 or IAPs and by redirecting LDL-mediated cholesterol transport to scavenge nutrients from the host.
Tuberculosis, or TB, is an infectious disease caused by Mycobacterium tuberculosis. One third of the world's population is thought to be infected with TB. About 90% of those infected result in latent infections, and about 10% of latent infections develop active diseases when their immune system is impaired due to the age, other diseases such as AIDS or exposure to immunosuppressive drugs. TB is transmitted through the air and primarily attacks the lungs, then it can spread by the circulatory system to other parts of body. Once TB bacilli have entered the host by the respiratory route and infected macrophages in the lungs, they interfere with phagosomal maturation, antigen presentation, apoptosis and host immune system to establish persistent or latent infection.
Hepatitis C virus (HCV) is a major cause of chronic liver disease. The HCV employ several strategies to perturb host cell immunity. After invasion, HCV RNA genome functions directly as an mRNA in the cytoplasm of the host cell and forms membrane-associated replication complexes along with non-structural proteins. Viral RNA can trigger the RIG-I pathway and interferon production during this process. Translated HCV protein products regulate immune response to inhibit the action of interferon. HCV core and NS5A proteins appear to be the most important molecules with regulatory functions that modulate transcription, cellular proliferation, and apoptosis.
Hepatitis B virus (HBV) is an enveloped virus and contains a partially double-stranded relaxed circular DNA (RC-DNA) genome. After entry into hepatocytes, HBV RC-DNA is transported to the nucleus and converted into a covalently closed circular molecule cccDNA. The cccDNA is the template for transcription of all viral RNAs including the pregenomic RNA (pgRNA), encoding for 7 viral proteins: large, middle, and small envelope proteins (LHBs, MHBs, and SHBs) that form the surface antigen (HBsAg), the core antigen (HBcAg), the e antigen (HBeAg), the HBV polymerase, and the regulatory protein X (HBx). The pgRNA interacts with the viral polymerase protein to initiate the encapsidation into the core particles. Through endoplasmic reticulum, the core particles finish assembling with the envelope proteins and are released. HBV infection leads to a wide spectrum of liver diseases raging from chronic hepatitis, cirrhosis to hepatocellular carcinoma. The mechanism of liver injury is still not clear. However, HBV proteins target host proteins, involved in a variety of functions, thus regulating transcription, cellular signaling cascades, proliferation, differentiation, and apoptosis.
Measles virus (MV) is highly contagious virus that leads infant death worldwide. Humans are the unique natural reservoir for this virus. It causes severe immunosuppression favouring secondary bacterial infections. Several MV proteins have been suggested to disturb host immunity. After infection of host lymphoid cells via SLAM, MV inhibits cytokine response by direct interference with host signaling systems. Three proteins (P, V, and C) associate with Jak/STAT proteins in interferon-triggered pathway and other important proteins related to apoptosis. Interaction between MV and host brings about the shift towards a Th2 response by decreasing IL-12 production and induces lymphopenia by suppressing cell proliferation.
Human cytomegalovirus (HCMV) is an enveloped, double-stranded DNA virus that is a member of beta-herpesvirus family. HCMV is best known for causing significant morbidity and mortality in immunocompromised populations. As with other herpesviruses, HCMV gB and gH/gL envelope glycoproteins are essential for virus entry. HCMV gB could activate the PDGFRA, and induce activation of the oncogenic PI3-K/AKT pathway. Though it is unlikely that HCMV by itself can act as an oncogenic factor, HCMV may have an oncomodulatory role, to catalyze an oncogenic process that has already been initiated. US28, one of the four HCMV-encoded vGPCRs (US27, US28, UL33 and UL78), also has a specific role in the oncomodulatory properties. In addition, HCMV has developed numerous mechanisms for manipulating the host immune system. The virally encoded US2, US3, US6 and US11 gene products all interfere with major histocompatibility complex (MHC) class I antigen presentation. HCMV encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA). These proteins might avoid immune clearance of infected tumor cells by cytotoxic lymphocytes and NK cells.
Influenza is a contagious respiratory disease caused by influenza virus infection. Influenza A virus is responsible for both annual seasonal epidemics and periodic worldwide pandemics. Novel strains that cause pandemics arise from avian influenza virus by genetic reassortment among influenza viruses and two surface glycoproteins HA and NA form the basis of serologically distinct virus types. The innate immune system recognizes invaded virus through multiple mechanisms. Viral non-structural NS1 protein is a multifunctional virulence factor that interfere IFN-mediated antiviral response. It inhibits IFN production by blocking activation of transcription factors such as NF-kappa B, IRF3 and AP1. NS1 further inhibits the activation of IFN-induced antiviral genes. PB1-F2 protein is another virulence factor that induce apoptosis of infected cells, which results in life-threatening bronchiolitis.
Human papillomavirus (HPV) is a non-enveloped, double-stranded DNA virus. HPV infect mucoal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. All types of HPV share a common genomic structure and encode eight proteins: E1, E2, E4, E5, E6, and E7 (early) and L1 and L2 (late). It has been demonstrated that E1 and E2 are involved in viral transcription and replication. The functions of the E4 protein is not yet fully understood. E5, E6, and E7 act as oncoproteins. E5 inhibits the V-ATPase, prolonging EGFR signaling and thereby promoting cell proliferation. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways. Among these pathways, PI3K/Akt signalling cascade plays a very important role in HPV-induced carcinogenesis. The L1 and L2 proteins form icosahedral capsids for progeny virion generation.
Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, SRF, and NFAT.
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus, and is associated with the pathogenesis of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). Like all other herpesviruses, KSHV displays two modes of life cycle, latency and lytic replication, which are characterized by the patterns of viral gene expression. Genes expressed in latency (LANA, v-cyclin, v-FLIP, Kaposins A, B and C and viral miRNAs) are mainly thought to facilitate the establishment of life long latency in its host and survival against the host innate, and adaptive immune surveillance mechanisms. Among the viral proteins shown to be expressed during lytic replication are potent signaling molecules such as vGPCR, vIL6, vIRFs, vCCLs, K1 and K15, which have been implicated experimentally in the angiogenic and inflammatory phenotype observed in KS lesions. Several of these latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of severe human malignancies.
Herpes simplex virus (HSV) infections are very common worldwide, with the prevalence of HSV-1 reaching up to 80%-90%. Primary infection with HSV takes place in the mucosa, followed by the establishment of latent infection in neuronal ganglia. HSV is the main cause of herpes infections that lead to the formation of characteristic blistering lesion. HSV express multiple viral accessory proteins that interfere with host immune responses and are indispensable for viral replication. Among these proteins, the immediate early (IE) gene ICP0, ICP4, and ICP27 are essential for regulation of HSV gene expression in productive infection. On the other hand, ORF P and ORF O gene are transcribed during latency and blocks the expression of the IE genes, thus maintaining latent infection.
Epstein-Barr virus (EBV) is a gamma-herpes virus that widely infects human populations predominantly at an early age but remains mostly asymptomatic. EBV has been linked to a wide spectrum of human malignancies, including nasopharyngeal carcinoma and other hematologic cancers, like Hodgkin's lymphoma, Burkitt's lymphoma (BL), B-cell immunoblastic lymphoma in HIV patients, and posttransplant-associated lymphoproliferative diseases. EBV has the unique ability to establish life-long latent infection in primary human B lymphocytes. During latent infection, EBV expresses a small subset of genes, including 6 nuclear antigens (EBNA-1, -2, -3A, -3B, -3C, and -LP), 3 latent membrane proteins (LMP-1, -2A, and -2B), 2 small noncoding RNAs (EBER-1 and 2). On the basis of these latent gene expression, three different latency patterns associated with the types of cancers are recognized.
There is a strong association between viruses and the development of human malignancies. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Via expression of many potent oncoproteins, these tumor viruses promote an aberrant cell-proliferation via modulating cellular cell-signaling pathways and escape from cellular defense system such as blocking apoptosis. Human tumor virus oncoproteins can also disrupt pathways that are necessary for the maintenance of the integrity of host cellular genome. Viruses that encode such activities can contribute to initiation as well as progression of human cancers.
Infiltrating ductal adenocarcinoma is the most common malignancy of the pancreas. When most investigators use the term 'pancreatic cancer' they are referring to pancreatic ductal adenocarcinoma (PDA). Normal duct epithelium progresses to infiltrating cancer through a series of histologically defined precursors (PanINs). The overexpression of HER-2/neu and activating point mutations in the K-ras gene occur early, inactivation of the p16 gene at an intermediate stage, and the inactivation of p53, SMAD4, and BRCA2 occur relatively late. Activated K-ras engages multiple effector pathways. Although EGF receptors are conventionally regarded as upstream activators of RAS proteins, they can also act as RAS signal transducers via RAS-induced autocrine activation of the EGFR family ligands. Moreover, PDA shows extensive genomic instability and aneuploidy. Telomere attrition and mutations in p53 and BRCA2 are likely to contribute to these phenotypes. Inactivation of the SMAD4 tumour suppressor gene leads to loss of the inhibitory influence of the transforming growth factor-beta signalling pathway.
Interleukin-6 (IL-6) is a pleiotropic cytokine with roles in processes including immune regulation, hematopoiesis, inflammation, oncogenesis, metabolic control and sleep. It is the founding member of a family of IL-6-related cytokines such as IL-11, IL-27 leukemia inhibitory factor (LIF), cilliary neurotrophic factor (CNTF) and oncostatin M. The IL-6 receptor (IL6R) consists of an alpha subunit that specifically binds IL-6 and a beta subunit, IL6RB or gp130, which is the signaling component of all the receptors for cytokines related to IL-6. IL6R alpha exists in transmembrane and soluble forms. The transmembrane form is mainly expressed by hepatocytes, neutrophils, monocytes/macrophages, and some lymphocytes. Soluble forms of IL6R (sIL6R) are also expressed by these cells. Two major mechanisms for the production of sIL6R have been proposed. Alternative splicing generates a transcript lacking the transmembrane domain by using splicing donor and acceptor sites that flank the transmembrane domain coding region. This also introduces a frameshift leading to the incorporation of 10 additional amino acids at the C terminus of sIL6R.A second mechanism for the generation of sIL6R is the proteolytic cleavage or 'shedding' of membrane-bound IL-6R. Two proteases ADAM10 and ADAM17 are thought to contribute to this (Briso et al. 2008). sIL6R can bind IL6 and stimulate cells that express gp130 but not IL6R alpha, a process that is termed trans-signaling. This explains why many cells, including hematopoietic progenitor cells, neuronal cells, endothelial cells, smooth muscle cells, and embryonic stem cells, do not respond to IL6 alone, but show a remarkable response to IL6/sIL6R. It is clear that the trans-signaling pathway is responsible for the pro-inflammatory activities of IL-6 whereas the membrane bound receptor governs regenerative and anti-inflammatory IL-6 activitiesIL6R signal transduction is mediated by two pathways:the JAK-STAT (Janus family tyrosine kinase-signal transducer and activator of transcription) pathway and the Ras-MAPK (mitogen-activated protein kinase) pathway. Negative regulators of IL-6 signaling include SOCS (suppressor of cytokine signals) and SHP2. Within the last few years different antibodies have been developed to inhibit IL-6 activity, and the first such antibodies have been introduced into the clinic for the treatment of inflammatory diseases (Kopf et al. 2010)
Mitogen-activated protein kinase kinase MAP2K1 (also known as MEK1) is a dual threonine and tyrosine recognition kinase that phosphorylates and activates MAPK3 (ERK1) (Ohren et al. 2004; Roskoski 2012a)
Mitogen-activated protein kinase kinase MAP2K2 (also known as MEK2) is a dual threonine and tyrosine recognition kinase that phosphorylates and activates MAPK1 (ERK2) (Ohren et al. 2004; Roskoski 2012)
Interferon-stimulated gene 15 (ISG15) is a member of the ubiquitin-like (Ubl) family. It is strongly induced upon exposure to type I Interferons (IFNs), viruses, bacterial LPS, and other stresses. Once released the mature ISG15 conjugates with an array of target proteins, a process termed ISGylation. ISGylation utilizes a mechanism similar to ubiquitination, requiring a three-step enzymatic cascade. UBE1L is the ISG15 E1 activating enzyme which specifically activates ISG15 at the expense of ATP. ISG15 is then transfered from E1 to the E2 conjugating enzyme UBCH8 and then to the target protein with the aid of an ISG15 E3 ligase, such as HERC5 and EFP. Hundreds of target proteins for ISGylation have been identified. Several proteins that are part of antiviral signaling pathways, such as RIG-I, MDA5, Mx1, PKR, filamin B, STAT1, IRF3 and JAK1, have been identified as targets for ISGylation. ISG15 also conjugates some viral proteins, inhibiting viral budding and release. ISGylation appears to act either by disrupting the activity of a target protein and/or by altering its localization within the cell
Interleukin-7 (IL7) is produced primarily by T zone fibroblastic reticular cells found in lymphoid organs, and also expressed by non-hematopoietic stromal cells present in other tissues including the skin, intestine and liver. It is an essential survival factor for lymphocytes, playing a key anti-apoptotic role in T-cell development, as well as mediating peripheral T-cell maintenance and proliferation. This dual function is reflected in a dose-response relationship that distinguishes the survival function from the proliferative activity; low doses of IL7 (<1 ng/ml) sustain only survival, higher doses (>1 ng/ml) promote survival and cell cycling (Kittipatarin et al. 2006, Swainson et al. 2007).The IL7 receptor is a heterodimeric complex of the the common cytokine-receptor gamma chain (IL2RG, CD132, or Gc) and the IL7-receptor alpha chain (IL7R, IL7RA, CD127). Both chains are members of the type 1 cytokine family. Neither chain is unique to the IL7 receptor as IL7R is utilized by the receptor for thymic stromal lymphopoietin (TSLP) while IL2RG is shared with the receptors for IL2, IL4, IL9, IL15 and IL21. IL2RG consists of a single transmembrane region and a 240aa extracellular region that includes a fibronectin type III (FNIII) domain thought to be involved in receptor complex formation. It is expressed on most lymphocyte populations. Null mutations of IL2RG in humans cause X-linked severe combined immunodeficiency (X-SCID), which has a phenotype of severely reduced T-cell and natural killer (NK) cell populations, but normal numbers of B cells. In addition to reduced T- and NK-cell numbers, Il2rg knockout mice also have dramatically reduced B-cell populations suggesting that Il2rg is more critical for B-cell development in mice than in humans. Patients with severe combined immunodeficiency (SCID) phenotype due to IL7R mutations (see Puel & Leonard 2000), or a partial deficiency of IL7R (Roifman et al. 2000) have markedly reduced circulating T cells, but normal levels of peripheral blood B cells and NK cells, similar to the phenotype of IL2RG mutations, highlighting a requirement for IL7 in T cell lymphopoiesis. It has been suggested that IL7 is essential for murine, but not human B cell development, but recent studies indicate that IL7 is essential for human B cell production from adult bone marrow and that IL7-induced expansion of the progenitor B cell compartment is increasingly critical for human B cell production during later stages of development (Parrish et al. 2009).IL7 has been shown to induce rapid and dose-dependent tyrosine phosphorylation of JAKs 1 and 3, and concomitantly tyrosine phosphorylation and DNA-binding activity of STAT5a/b (Foxwell et al. 1995). IL7R was shown to directly induce the activation of JAKs and STATs by van der Plas et al. (1996). Jak1 and Jak3 knockout mice displayed severely impaired thymic development, further supporting their importance in IL7 signaling (Rodig et al. 1998, Nosaka et al. 1995).The role of STAT5 in IL7 signaling has been studied largely in mouse models. Tyr449 in the cytoplasmic domain of IL7RA is required for T-cell development in vivo and activation of JAK/STAT5 and PI3k/Akt pathways (Jiang et al. 2004, Pallard et al. 1999). T-cells from an IL7R Y449F knock-in mouse did not activate STAT5 (Osbourne et al. 2007), indicating that IL7 regulates STAT5 activity via this key tyrosine residue. STAT5 seems to enhance proliferation of multiple cell lineages in mouse models but it remains unclear whether STAT5 is required solely for survival signaling or also for the induction of proliferative activity (Kittipatarin & Khaled, 2007).The model for IL7 receptor signaling is believed to resemble that of other Gc family cytokines, based on detailed studies of the IL2 receptor, where IL2RB binds constitutively to JAK1 while JAK3 is pre-associated uniquely with the IL2RG chain. Extending this model to IL7 suggests a similar series of events: IL7R constitutively associated with JAK1 binds IL7, the resulting trimer recruits IL2RG:JAK3, bringing JAK1 and JAK3 into proximity. The association of both chains of the IL7 receptor orients the cytoplasmic domains of the receptor chains so that their associated kinases (Janus and phosphatidylinositol 3-kinases) can phosphorylate sequence elements on the cytoplasmic domains (Jiang et al. 2005). JAKs have low intrinsic enzymatic activity, but after mutual phosphorylation acquire much higher activity, leading to phosphorylation of the critical Y449 site on IL7R. This site binds STAT5 and possibly other signaling adapters, they in turn become phosphorylated by JAK1 and/or JAK3. Phosphorylated STATs translocate to the nucleus and trigger the transcriptional events of their target genes.The role of the PI3K/AKT pathway in IL7 signaling is controversial. It is a potential T-cell survival pathway because in many cell types PI3K signaling regulates diverse cellular functions such as cell cycle progression, transcription, and metabolism. The ERK/MAPK pathway does not appear to be involved in IL7 signaling (Crawley et al. 1996).It is not clear how IL7 influences cell proliferation. In the absence of a proliferative signal such as IL7 or IL3, dependent lymphocytes arrest in the G0/G1 phase of the cell cycle. To exit this phase, cells typically activate specific G1 Cyclin-dependent kinases/cyclins and down regulate cell cycle inhibitors such as Cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27kip1). There is indirect evidence suggesting a possible role for IL7 stimulated activation of PI3K/AKT signaling, obtained from transformed cell lines and thymocytes, but not confirmed by observations using primary T-cells (Kittipatarin & Khaled, 2007). IL7 withdrawal results in G1/S cell cycle arrest and is correlated with loss of cdk2 activity (Geiselhart et al. 2001), both events which are known to be regulated by the dephosphorylating activity of Cdc25A. Expression of a p38 MAPK-resistant Cdc25A mutant in an IL-7-dependent T-cell line as well as in peripheral, primary T-cells was sufficient to sustain cell survival and promote cell cycling for several days in the absence of IL7 (Khaled et al. 2005). Cdkn1b is a member of the CIP/KIP family of cyclin-dependent cell cycle inhibitors (CKIs) that negatively regulates the G1/S transition. In IL7 dependent T-cells, the expression of Cdkn1b was sufficient to cause G1 arrest in the presence of IL7. Withdrawal of IL7 induced the upregulation of Cdkn1b and arrested cells in G1 while siRNA knockout of Cdkn1b enhanced cell cycle progression. However, adoptive transfer of Cdkn1b-deficient lymphocytes into IL7 deficient mice indicated that loss of Cdkn1b could only partially compensate for the IL7 signal needed by T-cells to expand in a lymphopenic environment (Li et al. 2006), so though Cdkn1b may be involved in negative regulation of the cell cycle through an effect on cdk2 activity, its absence is not sufficient to fully induce cell cycling under lymphopenic conditions
Interleukins are low molecular weight proteins that bind to cell surface receptors and act in an autocrine and/or paracrine fashion. They were first identified as factors produced by leukocytes but are now known to be produced by many other cells throughout the body. They have pleiotropic effects on cells which bind them, impacting processes such as tissue growth and repair, hematopoietic homeostasis, and multiple levels of the host defense against pathogens where they are an essential part of the immune system
The RAS-RAF-MEK-ERK pathway regulates processes such as proliferation, differentiation, survival, senescence and cell motility in response to growth factors, hormones and cytokines, among others. Binding of these stimuli to receptors in the plasma membrane promotes the GEF-mediated activation of RAS at the plasma membrane and initiates the three-tiered kinase cascade of the conventional MAPK cascades. GTP-bound RAS recruits RAF (the MAPK kinase kinase), and promotes its dimerization and activation (reviewed in Cseh et al, 2014; Roskoski, 2010; McKay and Morrison, 2007; Wellbrock et al, 2004). Activated RAF phosphorylates the MAPK kinase proteins MEK1 and MEK2 (also known as MAP2K1 and MAP2K2), which in turn phophorylate the proline-directed kinases ERK1 and 2 (also known as MAPK3 and MAPK1) (reviewed in Roskoski, 2012a, b; Kryiakis and Avruch, 2012). Activated ERK proteins may undergo dimerization and have identified targets in both the nucleus and the cytosol; consistent with this, a proportion of activated ERK protein relocalizes to the nucleus in response to stimuli (reviewed in Roskoski 2012b; Turjanski et al, 2007; Plotnikov et al, 2010; Cargnello et al, 2011). Although initially seen as a linear cascade originating at the plasma membrane and culminating in the nucleus, the RAS/RAF MAPK cascade is now also known to be activated from various intracellular location. Temporal and spatial specificity of the cascade is achieved in part through the interaction of pathway components with numerous scaffolding proteins (reviewed in McKay and Morrison, 2007; Brown and Sacks, 2009). The importance of the RAS/RAF MAPK cascade is highlighted by the fact that components of this pathway are mutated with high frequency in a large number of human cancers. Activating mutations in RAS are found in approximately one third of human cancers, while ~8% of tumors express an activated form of BRAF (Roberts and Der, 2007; Davies et al, 2002; Cantwell-Dorris et al, 2011)
Interleukin-10 (IL10) was originally described as a factor named cytokine synthesis inhibitory factor that inhibited T-helper (Th) 1 activation and Th1 cytokine production (Fiorentino et al. 1989). It was found to be expressed by a variety of cell types including macrophages, dendritic cell subsets, B cells, several T-cell subpopulations including Th2 and T-regulatory cells (Tregs) and Natural Killer (NK) cells (Moore et al. 2001). It is now recognized that the biological effects of IL10 are directed at antigen-presenting cells (APCs) such as macrophages and dendritic cells (DCs), its effects on T-cell development and differentiation are largely indirect via inhibition of macrophage/dendritic cell activation and maturation (Pestka et al. 2004, Mocellin et al. 2004). T cells are thought to be the main source of IL10 (Hedrich & Bream 2010). IL10 inhibits a broad spectrum of activated macrophage/monocyte functions including monokine synthesis, NO production, and expression of class II MHC and costimulatory molecules such as IL12 and CD80/CD86 (de Waal Malefyt et al. 1991, Gazzinelli et al. 1992). Studies with recombinant cytokine and neutralizing antibodies revealed pleiotropic activities of IL10 on B, T, and mast cells (de Waal Malefyt et al. 1993, Rousset et al. 1992, Thompson-Snipes et al. 1991) and provided evidence for the in vivo significance of IL10 activities (Ishida et al. 1992, 1993). IL10 antagonizes the expression of MHC class II and the co-stimulatory molecules CD80/CD86 as well as the pro-inflammatory cytokines IL1Beta, IL6, IL8, TNFalpha and especially IL12 (Fiorentino et al. 1991, D'Andrea et al. 1993). The biological role of IL10 is not limited to inactivation of APCs, it also enhances B cell, granulocyte, mast cell, and keratinocyte growth/differentiation, as well as NK-cell and CD8+ cytotoxic T-cell activation (Moore et al. 2001, Hedrich & Bream 2010). IL10 also enhances NK-cell proliferation and/or production of IFN-gamma (Cai et al. 1999). IL10-deficient mice exhibited inflammatory bowel disease (IBD) and other exaggerated inflammatory responses (Kuhn et al. 1993, Berg et al. 1995) indicating a critical role for IL10 in limiting inflammatory responses. Dysregulation of IL10 is linked with susceptibility to numerous infectious and autoimmune diseases in humans and mouse models (Hedrich & Bream 2010). IL10 signaling is initiated by binding of homodimeric IL10 to the extracellular domains of two adjoining IL10RA molecules. This tetramer then binds two IL10RB chains. IL10RB cannot bind to IL10 unless bound to IL10RA (Ding et al. 2001, Yoon et al. 2006); binding of IL10 to IL10RA without the co-presence of IL10RB fails to initiate signal transduction (Kotenko et al. 1997).IL10 binding activates the receptor-associated Janus tyrosine kinases, JAK1 and TYK2, which are constitutively bound to IL10R1 and IL10R2 respectively. In the classic model of receptor activation assembly of the receptor complex is believed to enable JAK1/TYK2 to phosphorylate and activate each other. Alternatively the binding of IL10 may cause conformational changes that allow the pseudokinase inhibitory domain of one JAK kinase to move away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate (Waters & Brooks 2015).The activated JAK kinases phosphorylate the intracellular domains of the IL10R1 chains on specific tyrosine residues. These phosphorylated tyrosine residues and their flanking peptide sequences serve as temporary docking sites for the latent, cytosolic, transcription factor, STAT3. STAT3 transiently docks on the IL10R1 chain via its SH2 domain, and is in turn tyrosine phosphorylated by the receptor-associated JAKs. Once activated, it dissociates from the receptor, dimerizes with other STAT3 molecules, and translocates to the nucleus where it binds with high affinity to STAT-binding elements (SBEs) in the promoters of IL-10-inducible genes (Donnelly et al. 1999)
Interleukin-4 (IL4) is a principal regulatory cytokine during the immune response, crucially important in allergy and asthma (Nelms et al. 1999). When resting T cells are antigen-activated and expand in response to Interleukin-2 (IL2), they can differentiate as Type 1 (Th1) or Type 2 (Th2) T helper cells. The outcome is influenced by IL4. Th2 cells secrete IL4, which both stimulates Th2 in an autocrine fashion and acts as a potent B cell growth factor to promote humoral immunity (Nelms et al. 1999). Interleukin-13 (IL13) is an immunoregulatory cytokine secreted predominantly by activated Th2 cells. It is a key mediator in the pathogenesis of allergic inflammation. IL13 shares many functional properties with IL4, stemming from the fact that they share a common receptor subunit. IL13 receptors are expressed on human B cells, basophils, eosinophils, mast cells, endothelial cells, fibroblasts, monocytes, macrophages, respiratory epithelial cells, and smooth muscle cells, but unlike IL4, not T cells. Thus IL13 does not appear to be important in the initial differentiation of CD4 T cells into Th2 cells, rather it is important in the effector phase of allergic inflammation (Hershey et al. 2003).\n\nIL4 and IL13 induce “alternative activation” of macrophages, inducing an anti-inflammatory phenotype by signaling through IL4R alpha in a STAT6 dependent manner. This signaling plays an important role in the Th2 response, mediating anti-parasitic effects and aiding wound healing (Gordon & Martinez 2010, Loke et al. 2002)\n\nThere are two types of IL4 receptor complex (Andrews et al. 2006). Type I IL4R (IL4R1) is predominantly expressed on the surface of hematopoietic cells and consists of IL4R and IL2RG, the common gamma chain. Type II IL4R (IL4R2) is predominantly expressed on the surface of nonhematopoietic cells, it consists of IL4R and IL13RA1 and is also the type II receptor for IL13. (Obiri et al. 1995, Aman et al. 1996, Hilton et al. 1996, Miloux et al. 1997, Zhang et al. 1997). The second receptor for IL13 consists of IL4R and Interleukin-13 receptor alpha 2 (IL13RA2), sometimes called Interleukin-13 binding protein (IL13BP). It has a high affinity receptor for IL13 (Kd = 250 pmol/L) but is not sufficient to render cells responsive to IL13, even in the presence of IL4R (Donaldson et al. 1998). It is reported to exist in soluble form (Zhang et al. 1997) and when overexpressed reduces JAK-STAT signaling (Kawakami et al. 2001). It's function may be to prevent IL13 signalling via the functional IL4R:IL13RA1 receptor. IL13RA2 is overexpressed and enhances cell invasion in some human cancers (Joshi & Puri 2012).The first step in the formation of IL4R1 (IL4:IL4R:IL2RB) is the binding of IL4 with IL4R (Hoffman et al. 1995, Shen et al. 1996, Hage et al. 1999). This is also the first step in formation of IL4R2 (IL4:IL4R:IL13RA1). After the initial binding of IL4 and IL4R, IL2RB binds (LaPorte et al. 2008), to form IL4R1. Alternatively, IL13RA1 binds, forming IL4R2. In contrast, the type II IL13 complex (IL13R2) forms with IL13 first binding to IL13RA1 followed by recruitment of IL4R (Wang et al. 2009).Crystal structures of the IL4:IL4R:IL2RG, IL4:IL4R:IL13RA1 and IL13:IL4R:IL13RA1 complexes have been determined (LaPorte et al. 2008). Consistent with these structures, in monocytes IL4R is tyrosine phosphorylated in response to both IL4 and IL13 (Roy et al. 2002, Gordon & Martinez 2010) while IL13RA1 phosphorylation is induced only by IL13 (Roy et al. 2002, LaPorte et al. 2008) and IL2RG phosphorylation is induced only by IL4 (Roy et al. 2002).Both IL4 receptor complexes signal through Jak/STAT cascades. IL4R is constitutively-associated with JAK2 (Roy et al. 2002) and associates with JAK1 following binding of IL4 (Yin et al. 1994) or IL13 (Roy et al. 2002). IL2RG constitutively associates with JAK3 (Boussiotis et al. 1994, Russell et al. 1994). IL13RA1 constitutively associates with TYK2 (Umeshita-Suyama et al. 2000, Roy et al. 2002, LaPorte et al. 2008, Bhattacharjee et al. 2013). IL4 binding to IL4R1 leads to phosphorylation of JAK1 (but not JAK2) and STAT6 activation (Takeda et al. 1994, Ratthe et al. 2007, Bhattacharjee et al. 2013). IL13 binding increases activating tyrosine-99 phosphorylation of IL13RA1 but not that of IL2RG. IL4 binding to IL2RG leads to its tyrosine phosphorylation (Roy et al. 2002). IL13 binding to IL4R2 leads to TYK2 and JAK2 (but not JAK1) phosphorylation (Roy & Cathcart 1998, Roy et al. 2002).Phosphorylated TYK2 binds and phosphorylates STAT6 and possibly STAT1 (Bhattacharjee et al. 2013). A second mechanism of signal transduction activated by IL4 and IL13 leads to the insulin receptor substrate (IRS) family (Kelly-Welch et al. 2003). IL4R1 associates with insulin receptor substrate 2 and activates the PI3K/Akt and Ras/MEK/Erk pathways involved in cell proliferation, survival and translational control. IL4R2 does not associate with insulin receptor substrate 2 and consequently the PI3K/Akt and Ras/MEK/Erk pathways are not activated (Busch-Dienstfertig & González-Rodríguez 2013)
The members involved in (interleukin)-6-type cytokine signalling are the IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CTF1) and cardiotrophin-like cytokine factor 1 (CLCF1). Receptors involved in recognition of the IL-6-type cytokines can be subdivided in the non-signalling alpha-receptors (IL6R, IL 11R, and CNTFR) and the signal transducing receptors (gp130, LIFR, and OSMR). The latter associate with JAKs and become tyrosine phosphorylated in response to cytokine stimulation (Heinrich et al. 1998, 2003). IL27 and IL35 belongs to IL12 cytokine family but they share gp130 as a component of signalling receptor, along with IL-6, IL-11, LIF, OSM, CNTF, CTF1 and CLCF1
Interferon-gamma (IFN-gamma) belongs to the type II interferon family and is secreted by activated immune cells-primarily T and NK cells, but also B-cells and APC. INFG exerts its effect on cells by interacting with the specific IFN-gamma receptor (IFNGR). IFNGR consists of two chains, namely IFNGR1 (also known as the IFNGR alpha chain) and IFNGR2 (also known as the IFNGR beta chain). IFNGR1 is the ligand binding receptor and is required but not sufficient for signal transduction, whereas IFNGR2 do not bind IFNG independently but mainly plays a role in IFNG signaling and is generally the limiting factor in IFNG responsiveness. Both IFNGR chains lack intrinsic kinase/phosphatase activity and thus rely on other signaling proteins like Janus-activated kinase 1 (JAK1), JAK2 and Signal transducer and activator of transcription 1 (STAT-1) for signal transduction. IFNGR complex in its resting state is a preformed tetramer and upon IFNG association undergoes a conformational change. This conformational change induces the phosphorylation and activation of JAK1, JAK2, and STAT1 which in turn induces genes containing the gamma-interferon activation sequence (GAS) in the promoter
At least three different classes of negative regulators exist to control the extent of INFG stimulation and signaling. These include the feedback inhibitors belonging to protein family suppressors of cytokine signaling (SOCS), the Scr-homology 2 (SH2)-containing protein tyrosine phosphatases (SHPs), and the protein inhibitors of activated STATs (PIAS). The induction of these regulators seems to be able to stop further signal transduction by inhibiting various steps in IFNG cascade
The interleukin 20 (IL20) subfamily comprises IL19, IL20, IL22, IL24 and IL26. They are members of the larger IL10 family, but have been grouped together based on their usage of common receptor subunits and similarities in their target cell profiles and biological functions. Members of the IL20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. Much of the understanding of this group of cytokines is based on IL22, which is the most studied member (Rutz et al. 2014, Akdis M et al. 2016, Longsdon et al. 2012)
The high affinity Interleukin-15 receptor is a heterotrimer of Interleukin-15 receptor subunit alpha (IL15RA), Interleukin-2 receptor subunit beta (IL2RB, CD122) and Cytokine receptor common subunit gamma (IL2RG, CD132). IL2RB and IL2RG are also components of the Interleukin-2 (IL2) receptor. Treatment of human T cells with Interleukin-15 (IL15) results in tyrosine phosphorylation of Tyrosine-protein kinase JAK1 (JAK1, Janus kinase 1) and Tyrosine-protein kinase JAK3 (JAK3, Janus kinase 3) (Johnston et al. 1995, Winthrop 2017). IL15 can signal by a process termed 'trans presentation', where IL15 bound by IL15 on one cell is trans-presented to IL2RB:IL2RG on another cell (Dubois et al. 2002) but can also participate in more 'traditional' cis signaling (Wu et al. 2008, Mishra et al. 2014) where all the three receptors are present on the same cell. \nStimulation of lymphocytes by IL15 release MAPK activation through GAB2/SHP2/SHC (GRB2-associated-binding protein 2/Tyrosine-protein phosphatase non-receptor type 11/SHC transforming protein 1 or 2) cascade activation (Gadina et al. 2000)
Interleukin 35 (IL35) is an IL12 family cytokine produced by regulatory but not effector T-cells. It is a dimeric protein composed of IL-12RB2 and IL27RA chains. IL35 suppresses inflammatory responses of immune cells
Interleukin 9 (IL9) binds interleukin 9 receptor a chain (IL9R) and the interleukin 2 receptor common gamma chain (IL2RG) to initiate IL9 signaling downstream cascade. IL9R colocalize with Interleukin 2 receptor α chain and MHC molecules in lipid rafts of human T lymphoma cells (Nizsalóczki et al. 2014). IL2RG is essential for IL9 dependent growth signal transduction (Kimura et al. 1995). IL9R (glycoprotein of 64 kDa) has saturable and specific binding sites with a Kd of 100 pM (Renauld et al. 1992). The activated IL9R complex recruits tyrosine kinase proteins from the Janus kinase (JAK) family: JAK1 (JAK1) and JAK3 (JAK3) for subsequent activation of the Signal transducer and activator of transcription (STAT) factors STAT1, STAT3 and STAT5. The activated STATs form STAT5 dimers and STAT1:STAT3 heterodimers (Neurath & Finotto 2016, Li & Rostami 2010)
Interleukin-2 (IL-2) is a cytokine that is produced by T cells in response to antigen stimulation. Originally, IL-2 was discovered because of its potent growth factor activity on activated T cells in vitro and was therefore named 'T cell growth factor' (TCGF). However, the generation of IL-2- and IL-2 receptor-deficient mice revealed that IL-2 also plays a regulatory role in the immune system by suppressing autoimmune responses. Two main mechanisms have been identified that explain this suppressive function: (1) IL-2 sensitizes activated T cells for activation-induced cell death (AICD) and (2) IL-2 is critical for the survival and function of regulatory T cells (Tregs), which possess potent immunosuppressive properties.IL-2 signaling occurs when IL-2 binds to the heterotrimeric high-affinity IL-2 receptor (IL-2R), which consists of alpha, beta and gamma chains. The IL-2R was identified in 1981 via radiolabeled ligand binding (Robb et al. 1981). The IL-2R alpha chain was identified in 1982 (Leonard et al.), the beta chain in 1986/7 (Sharon et al. 1986, Teshigawara et al. 1987) and the IL-2R gamma chain in 1992 (Takeshita et al.). The high affinity of IL-2 binding to the IL-2R is created by a very rapid association rate to the IL-2R alpha chain, combined with a much slower dissociation rate contributed by the combination of the IL-2R beta and gamma chains (Wang & Smith 1987). After antigen stimulation, T cells upregulate the high-affinity IL-2R alpha chain; IL-2R alpha captures IL-2 and this complex then associates with the constitutively expressed IL-2R beta and gamma chains. The IL-2R gamma chain is shared by several other members of the cytokine receptor superfamily including IL-4, IL-7, IL-9, IL-15 and IL-21 receptors, and consequently is often referred to as the Common gamma chain (Gamma-c).\nThe tyrosine kinases Jak1 and Jak3, which are constitutively associated with IL-2R beta and Gamma-c respectively, are activated resulting in phosphorylation of three critical tyrosine residues in the IL-2R beta cytoplasmic tail. These phosphorylated residues enable recruitment of the adaptor molecule Shc, activating the MAPK and PI3K pathways, and the transcription factor STAT5. After phosphorylation, STAT5 forms dimers that translocate to the nucleus and initiate gene expression. While STAT5 activation is critical for IL-2 function in most cell types, the contribution of the PI3K/Akt pathway differs between distinct T cell subsets. In Tregs for example, PI3K/Akt is not involved in IL-2 signaling and this may explain some of the different functional outcomes of IL-2 signaling in Tregs vs. effector T cells
Interleukin 12 (IL-12) is heterodimeric cytokine produced by dendritic cells, macrophages and neutrophils. It is encoded by the genes Interleukin-12 subunit alpha (IL12A) and Interleukin-12 subunit beta (IL12B), which encode a 35-kDa light chain (p35) and a 40-kDa heavy chain (p40), respectively. The active IL12 heterodimer is sometimes referred to as p70. The p35 component has homology to single-chain cytokines, while p40 is homologous to the extracellular domains of members of the haematopoietic cytokine-receptor family. The IL12 heterodimer therefore resembles a cytokine linked to a soluble receptor. \n\nIL12 is involved in the differentiation of naive T cells into Th1 cells and sometimes known as T cell-stimulating factor. IL12 enhances the cytotoxic activity of Natural Killer cells and CD8+ cytotoxic T lymphocytes. IL12 also has anti-angiogenic activity, mediated by increased production of CXCL10 via interferon gamma. \n\nThe IL12 receptor is a heterodimer formed by Interleukin-12 receptor subunit beta-1 (IL12RB1) and Interleukin-12 receptor subunit beta-2 (IL12RB2), both of which have extensive homology to IL6ST (gp130), the signal transducing receptor subunit of the IL6-like cytokine superfamily. IL-12RB2 is considered to play the key role in IL12 function, in part because its expression on activated T cells is stimulated by cytokines that promote Th1 cell development and inhibited by those that promote Th2 cells development. In addition, IL12 binding leads to IL12RB2 tyrosine phosphorylation, which provides binding sites for the kinases Non-receptor tyrosine-protein kinase TYK2 and Tyrosine-protein kinase JAK2. These activate transcription factor proteins in the Signal transducer and activator of transcription (STAT) family, particularly STAT4
Interleukin-27 (IL27) is a heterodimeric cytokine that contains Epstein-Barr virus–induced gene 3 (EBI3) and IL27p28 (IL27). It signals through a receptor composed of Interleukin-6 receptor subunit beta (IL6ST, gp130), which is utilized by many cytokines, and Interleukin-27 receptor subunit alpha (IL27RA, WSX-1, TCCR) (Yoshida & Hunter 2015)
Interleukin-21 (IL21) is a pleiotropic cytokine with four alpha-helical bundles. It is produced primarily by natural killer T cells, T follicular helper cells and TH17 cells, with lower levels of production by numerous other populations of lymphohaematopoietic cells (Spolski & Leonard 2014). IL21 binds Interleukin-21 receptor (IL21R, NILR) and Cytokine receptor common subunit gamma (IL2RG, GammaC).IL21R has significant homology with the class I cytokine receptors Interleukin-2 receptor subunit beta (IL2RB) and Interleukin-4 receptor subunit alpha (IL4R) and was predicted to similarly form a complex with IL2RG. IL21R dimers can weakly bind and signal in response to IL21 but IL21 generates a much stronger response when IL21R is combined with IL2RG, which is required for a fully signaling capable IL21 receptor complex (Ozaki et al. 2000, Asao et al. 2001, Habib et al. 2002). IL21R can bind Janus kinase 1 (JAK1) (Ozaki et al. 2000) but IL2RG is required for IL21 induced signaling (Asao et al. 2001). The heteromeric IL21 receptor complex can activate JAK1, JAK3, Signal transducer and activator of transcription 1 (STAT1), STAT3, STAT4 and STAT5, depending on the cell type. In cultured T-cells IL21 induced phosphorylation of JAK1, JAK3, STAT1, STAT3 and weakly STAT5 (Asao et al. 2001). In primary CD4+ T cells IL21 induced the phosphorylation of STAT1 and STAT3 but not STAT5, whereas IL2 induced the phosphorylation of STAT5 and STAT1 but not STA3 (Bennet et al. 2003). IL21 stimulation of primary splenic B cells and the pro-B-cell line Ba-F3 induced the activation of JAK1, JAK3 and STAT5 (Habib et al. 2002). In primary human NK cells or the NK cell line NK-92, IL21 induced the activation of STAT1, STAT3, and STAT4 but not STAT5 (Strengell et al. 2002, 2003). IL21 activated STAT1 and STAT3 in human monocyte-derived macrophages (Vallières & Girard 2017)
Type I interferons (IFNs) are composed of various genes including IFN alpha (IFNA), beta (IFNB), omega, epsilon, and kappa. In humans the IFNA genes are composed of more than 13 subfamily genes, whereas there is only one IFNB gene. The large family of IFNA/B proteins all bind to a single receptor which is composed of two distinct chains: IFNAR1 and IFNAR2. The IFNA/B stimulation of the IFNA receptor complex leads to the formation of two transcriptional activator complexes: IFNA-activated-factor (AAF), which is a homodimer of STAT1 and IFN-stimulated gene factor 3 (ISGF3), which comprises STAT1, STAT2 and a member of the IRF family, IRF9/P48. AAF mediates activation of the IRF-1 gene by binding to GAS (IFNG-activated site), whereas ISGF3 activates several IFN-inducible genes including IRF3 and IRF7
Phosphorylation of Shc at three tyrosine residues, 239, 240 (Gotoh et al. 1996) and 317 (Salcini et al. 1994) involves unidentified tyrosine kinases presumed to be part of the activated receptor complex. These phosphorylated tyrosines subsequently bind SH2 signaling proteins such as Grb2, Gab2 and SHIP that are involved in the regulation of different signaling pathways. Grb2 can associate with the guanosine diphosphate-guanosine triphosphate exchange factor Sos1, leading to Ras activation and regulation of cell proliferation. Downstream signals are mediated via the Raf-MEK-Erk pathway.Grb2 can also associate through Gab2 with PI3K and with SHIP.Figure reproduced from Gu, H. et al. 2000. Mol. Cell. Biol. 20(19):7109-7120Copyright American Society for Microbiology. All Rights Reserved
There are several proteins and mechanisms involved in controlling the extent of ligand stimulation of IFNA/B signaling. These mechanisms can effect every step of the IFNA/B cascade. Dephosphorylation of JAK and STAT by SHP protein phosphatases, inhibition of STAT function in the nucleus by protein inhibitors of activated STATs (PIAS) proteins, inhibition of tyrosine kinase activity of JAKs by SOCS as well as inhibition of JAK and IFNAR2 interaction by UBP43 are few of the negative regulation mechanisms in controling type I IFN signaling