241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cell membrane Membrane raft Note=Colocalized with DPP4 in membrane rafts
Function (UniProt annotation)
Protein tyrosine-protein phosphatase required for T-cellactivation through the antigen receptor Acts as a positiveregulator of T-cell coactivation upon binding to DPP4 The firstPTPase domain has enzymatic activity, while the second one seemsto affect the substrate specificity of the first one Upon T-cellactivation, recruits and dephosphorylates SKAP1 and FYNDephosphorylates LYN, and thereby modulates LYN activity (Bysimilarity) (Microbial infection) Acts as a receptor for humancytomegalovirus protein UL11 and mediates binding of UL11 to T-cells, leading to reduced induction of tyrosine phosphorylation ofmultiple signaling proteins upon T-cell receptor stimulation andimpaired T-cell proliferation
Catalytic Activity (UniProt annotation)
Protein tyrosine phosphate + H(2)O = proteintyrosine + phosphate
Cell adhesion molecules are (glyco)proteins expressed on the cell surface and play a critical role in a wide array of biologic processes that include hemostasis, the immune response, inflammation, embryogenesis, and development of neuronal tissue. There are four main groups: the integrin family, the immunoglobulin superfamily, selectins, and cadherins. Membrane proteins that mediate immune cell–cell interactions fall into different categories, namely those involved in antigen recognition, costimulation and cellular adhesion. Furthermore cell-cell adhesions are important for brain morphology and highly coordinated brain functions such as memory and learning. During early development of the nervous system, neurons elongate their axons towards their targets and establish and maintain synapses through formation of cell-cell adhesions. Cell-cell adhesions also underpin axon-axon contacts and link neurons with supporting schwann cells and oligodendrocytes.
Activation of T lymphocytes is a key event for an efficient response of the immune system. It requires the involvement of the T-cell receptor (TCR) as well as costimulatory molecules such as CD28. Engagement of these receptors through the interaction with a foreign antigen associated with major histocompatibility complex molecules and CD28 counter-receptors B7.1/B7.2, respectively, results in a series of signaling cascades. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions, leading to T-cell proliferation, cytokine production and differentiation into effector cells.
Phagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes.
Primary immunodeficiencies (PIs) are a heterogeneous group of disorders, which affect cellular and humoral immunity or non-specific host defense mechanisms mediated by complement proteins, and cells such as phagocytes and natural killer (NK) cells. These disorders of the immune system cause increased susceptibility to infection, autoimmune disease, and malignancy. Most of PIs are due to genetic defects that affect cell maturation or function at different levels during hematopoiesis. Disruption of the cellular immunity is observed in patients with defects in T cells or both T and B cells. These cellular immunodeficiencies comprise 20% of all PIs. Disorders of humoral immunity affect B-cell differentiation and antibody production. They account for 70% of all PIs.
Prior to T cell receptor (TCR) stimulation, CD4/CD8 associated Lck remains seperated from the TCR and is maintained in an inactive state by the action of Csk. Csk phosphorylates the negative regulatory tyrosine of Lck and inactivates the Lck kinase domain.
Upon TCR stimulation, CD4/CD8 associated Lck co-localizes with the TCR leading to the phosphorylation of the CD3 and TCR subunit. Lck becomes activated by way of CD45-mediated dephosphorylation of negative regulatory tyrosine residues. The presence to PAG-bound Csk is further reduced via the dephosphorylation of PAG (step 1).
Lck is further activated by trans-autophosphorylation on the tyrosine residue on its activation loop (step 2). Active Lck further phosphorylates the tyrosine residues on CD3 chains. The signal-transducing CD3 delta/epsilon/gamma and TCR zeta chains contain a critical signaling motif known as the immunoreceptor tyrosine-based activation motif (ITAM). The two critical tyrosines of each ITAM motif are phosphorylated by Lck (step 3)
There are eight classes of semaphorins and four types of plexins. Semaphorin (SEMA) classes 1 and 2 are found in invertebrates and classes 3-7 are vertebrate sempahorines. Sempahorin class 3 is secreted, whereas the other classes are synthesised as transmembrane proteins. Vertebrate plexins (PLXNs) are classified into four subfamilies plexin-A to -D. There are four A-type plexins, three B-type, one C-type and D-type. Interactions between different subfamilies of plexins and semaphorins show differential specificity, which trigger different sets of biological functions. Another level of functional specificity specificity is attained by plexins by coupling with various coreceptors expressed in a cell- or tissue-specific manner, such as neuropilins (NRP), L1CAM, c-MET proto-oncogene, ERB2, CD72 and CD45 (Kruger et al. 2005, Law & Lee 2012)
Neutrophils are the most abundant leukocytes (white blood cells), indispensable in defending the body against invading microorganisms. In response to infection, neutrophils leave the circulation and migrate towards the inflammatory focus. They contain several subsets of granules that are mobilized to fuse with the cell membrane or phagosomal membrane, resulting in the exocytosis or exposure of membrane proteins. Traditionally, neutrophil granule constituents are described as antimicrobial or proteolytic, but granules also introduce membrane proteins to the cell surface, changing how the neutrophil responds to its environment (Borregaard et al. 2007). Primed neutrophils actively secrete cytokines and other inflammatory mediators and can present antigens via MHC II, stimulating T-cells (Wright et al. 2010).Granules form during neutrophil differentiation. Granule subtypes can be distinguished by their content but overlap in structure and composition. The differences are believed to be a consequence of changing protein expression and differential timing of granule formation during the terminal processes of neutrophil differentiation, rather than sorting (Le Cabec et al. 1996). The classical granule subsets are Azurophil or primary granules (AG), secondary granules (SG) and gelatinase granules (GG). Neutrophils also contain exocytosable storage cell organelles, storage vesicles (SV), formed by endocytosis they contain many cell-surface markers and extracellular, plasma proteins (Borregaard et al. 1992). Ficolin-1-rich granules (FG) are like GGs highly exocytosable but gelatinase-poor (Rorvig et al. 2009)
Affinity Capture-Western, Reconstituted Complex, affinity chromatography technology, anti bait coimmunoprecipitation, phosphatase assay, protein kinase assay, protein phosphatase assay, pull down
dephosphorylation reaction, direct interaction, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Reconstituted Complex, affinity chromatography technology, anti bait coimmunoprecipitation, phosphatase assay, protein kinase assay, protein phosphatase assay, pull down
dephosphorylation reaction, direct interaction, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Reconstituted Complex, affinity chromatography technology, anti bait coimmunoprecipitation, phosphatase assay, protein kinase assay, protein phosphatase assay, pull down
dephosphorylation reaction, direct interaction, phosphorylation reaction, physical, physical association
Affinity Capture-Western, Reconstituted Complex, affinity chromatography technology, anti bait coimmunoprecipitation, phosphatase assay, protein kinase assay, protein phosphatase assay, pull down
dephosphorylation reaction, direct interaction, phosphorylation reaction, physical, physical association