241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Nucleus Cytoplasmic vesicleNote=Primarily nuclear Found also in endocytic vesicles inassociation with beta-adaptin
Function (UniProt annotation)
Serine/threonine protein kinase which activatescheckpoint signaling upon double strand breaks (DSBs), apoptosisand genotoxic stresses such as ionizing ultraviolet A light (UVA),thereby acting as a DNA damage sensor Recognizes the substrateconsensus sequence [ST]-Q Phosphorylates 'Ser-139' of histonevariant H2AX/H2AFX at double strand breaks (DSBs), therebyregulating DNA damage response mechanism Also plays a role inpre-B cell allelic exclusion, a process leading to expression of asingle immunoglobulin heavy chain allele to enforce clonality andmonospecific recognition by the B-cell antigen receptor (BCR)expressed on individual B-lymphocytes After the introduction ofDNA breaks by the RAG complex on one immunoglobulin allele, actsby mediating a repositioning of the second allele topericentromeric heterochromatin, preventing accessibility to theRAG complex and recombination of the second allele Also involvedin signal transduction and cell cycle control May function as atumor suppressor Necessary for activation of ABL1 and SAPKPhosphorylates DYRK2, CHEK2, p53/TP53, FANCD2, NFKBIA, BRCA1,CTIP, nibrin (NBN), TERF1, RAD9 and DCLRE1C May play a role invesicle and/or protein transport Could play a role in T-celldevelopment, gonad and neurological function Plays a role inreplication-dependent histone mRNA degradation Binds DNA endsPhosphorylation of DYRK2 in nucleus in response to genotoxicstress prevents its MDM2-mediated ubiquitination and subsequentproteasome degradation Phosphorylates ATF2 which stimulates itsfunction in DNA damage response
Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of solid malignancies, including testicular, ovarian, head and neck, colorectal, bladder and lung cancers. The mechanism of action of Platinum-based drugs involves covalent binding to purine DNA bases, which primarily leads to cellular apoptosis. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Platinum resistance could arise from decreased drug influx, increased drug efflux, intracellular detoxification by glutathione, etc., decreased binding (e.g., due to high intracellular pH), increased DNA repair, decreased mismatch repair, defective apoptosis, and altered oncogene expression.
Homologous recombination (HR) is essential for the accurate repair of DNA double-strand breaks (DSBs), potentially lethal lesions. HR takes place in the late S-G2 phase of the cell cycle and involves the generation of a single-stranded region of DNA, followed by strand invasion, formation of a Holliday junction, DNA synthesis using the intact strand as a template, branch migration and resolution. It is investigated that RecA/Rad51 family proteins play a central role. The breast cancer susceptibility protein Brca2 and the RecQ helicase BLM (Bloom syndrome mutated) are tumor suppressors that maintain genome integrity, at least in part, through HR.
Nuclear factor-kappa B (NF-kappa B) is the generic name of a family of transcription factors that function as dimers and regulate genes involved in immunity, inflammation and cell survival. There are several pathways leading to NF-kappa B-activation. The canonical pathway is induced by tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or byproducts of bacterial and viral infections. This pathway relies on IKK- mediated IkappaB-alpha phosphorylation on Ser32 and 36, leading to its degradation, which allows the p50/p65 NF-kappa B dimer to enter the nucleus and activate gene transcription. Atypical pathways are IKK-independent and rely on phosphorylation of IkappaB-alpha on Tyr42 or on Ser residues in IkappaB-alpha PEST domain. The non-canonical pathway is triggered by particular members of the TNFR superfamily, such as lymphotoxin-beta (LT-beta) or BAFF. It involves NIK and IKK-alpha-mediated p100 phosphorylation and processing to p52, resulting in nuclear translocation of p52/RelB heterodimers.
The forkhead box O (FOXO) family of transcription factors regulates the expression of genes in cellular physiological events including apoptosis, cell-cycle control, glucose metabolism, oxidative stress resistance, and longevity. A central regulatory mechanism of FOXO proteins is phosphorylation by the serine-threonine kinase Akt/protein kinase B (Akt/PKB), downstream of phosphatidylinositol 3-kinase (PI3K), in response to insulin or several growth factors. Phosphorylation at three conserved residues results in the export of FOXO proteins from the nucleus to the cytoplasm, thereby decreasing expression of FOXO target genes. In contrast, the stress-activated c-Jun N-terminal kinase (JNK) and the energy sensing AMP-activated protein kinase (AMPK), upon oxidative and nutrient stress stimuli phosphorylate and activate FoxOs. Aside from PKB, JNK and AMPK, FOXOs are regulated by multiple players through several post-translational modifications, including phosphorylation, but also acetylation, methylation and ubiquitylation.
Mitotic cell cycle progression is accomplished through a reproducible sequence of events, DNA replication (S phase) and mitosis (M phase) separated temporally by gaps known as G1 and G2 phases. Cyclin-dependent kinases (CDKs) are key regulatory enzymes, each consisting of a catalytic CDK subunit and an activating cyclin subunit. CDKs regulate the cell's progression through the phases of the cell cycle by modulating the activity of key substrates. Downstream targets of CDKs include transcription factor E2F and its regulator Rb. Precise activation and inactivation of CDKs at specific points in the cell cycle are required for orderly cell division. Cyclin-CDK inhibitors (CKIs), such as p16Ink4a, p15Ink4b, p27Kip1, and p21Cip1, are involved in the negative regulation of CDK activities, thus providing a pathway through which the cell cycle is negatively regulated.Eukaryotic cells respond to DNA damage by activating signaling pathways that promote cell cycle arrest and DNA repair. In response to DNA damage, the checkpoint kinase ATM phosphorylates and activates Chk2, which in turn directly phosphorylates and activates p53 tumor suppressor protein. p53 and its transcriptional targets play an important role in both G1 and G2 checkpoints. ATR-Chk1-mediated protein degradation of Cdc25A protein phosphatase is also a mechanism conferring intra-S-phase checkpoint activation.
p53 activation is induced by a number of stress signals, including DNA damage, oxidative stress and activated oncogenes. The p53 protein is employed as a transcriptional activator of p53-regulated genes. This results in three major outputs; cell cycle arrest, cellular senescence or apoptosis. Other p53-regulated gene functions communicate with adjacent cells, repair the damaged DNA or set up positive and negative feedback loops that enhance or attenuate the functions of the p53 protein and integrate these stress responses with other signal transduction pathways.
Apoptosis is a genetically programmed process for the elimination of damaged or redundant cells by activation of caspases (aspartate-specific cysteine proteases). The onset of apoptosis is controlled by numerous interrelating processes. The 'extrinsic' pathway involves stimulation of members of the tumor necrosis factor (TNF) receptor subfamily, such as TNFRI, CD95/Fas or TRAILR (death receptors), located at the cell surface, by their specific ligands, such as TNF-alpha, FasL or TRAIL, respectively. The 'intrinsic' pathway is activated mainly by non-receptor stimuli, such as DNA damage, ER stress, metabolic stress, UV radiation or growth-factor deprivation. The central event in the 'intrinsic' pathway is the mitochondrial outer membrane permeabilization (MOMP), which leads to the release of cytochrome c. These two pathways converge at the level of effector caspases, such as caspase-3 and caspase-7. The third major pathway is initiated by the constituents of cytotoxic granules (e.g. Perforin and Granzyme B) that are released by CTLs (cytotoxic T-cells) and NK (natural killer) cells. Granzyme B, similarly to the caspases, cleaves its substrates after aspartic acid residues, suggesting that this protease has the ability to activate members of the caspase family directly. It is the balance between the pro-apoptotic and anti-apoptotic signals that eventually determines whether cells will undergo apoptosis, survive or proliferate. TNF family of ligands activates anti-apoptotic or cell-survival signals as well as apoptotic signals. NGF and Interleukin-3 promotes the survival, proliferation and differentiation of neurons or hematopoietic cells, respectively. Withdrawal of these growth factors leads to cell death, as described above.
Cellular senescence is a state of irreversible cellular arrest and can be triggered by a number of factors, such as telomere shortening, oncogene activation, irradiation, DNA damage and oxidative stress. It is characterized by enlarged flattened morphology, senescence-associated beta-galactosidase (SA-b-gal) activity, secretion of inflammatory cytokines, growth factors and matrix metalloproteinases, as part of the senescence-associated secretory phenotype (SASP). Cellular senescence is functionally associated with many biological processes including aging, tumor suppression, placental biology, embryonic development, and wound healing.
Human papillomavirus (HPV) is a non-enveloped, double-stranded DNA virus. HPV infect mucoal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. All types of HPV share a common genomic structure and encode eight proteins: E1, E2, E4, E5, E6, and E7 (early) and L1 and L2 (late). It has been demonstrated that E1 and E2 are involved in viral transcription and replication. The functions of the E4 protein is not yet fully understood. E5, E6, and E7 act as oncoproteins. E5 inhibits the V-ATPase, prolonging EGFR signaling and thereby promoting cell proliferation. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways. Among these pathways, PI3K/Akt signalling cascade plays a very important role in HPV-induced carcinogenesis. The L1 and L2 proteins form icosahedral capsids for progeny virion generation.
Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, SRF, and NFAT.
Human immunodeficiency virus type 1 (HIV-1) , the causative agent of AIDS (acquired immunodeficiency syndrome), is a lentivirus belonging to the Retroviridae family. The primary cell surface receptor for HIV-1, the CD4 protein, and the co-receptor for HIV-1, either CCR5 or CXCR4, are found on macrophages and T lymphocytes. At the earliest step, sequential binding of virus envelope (Env) glycoprotein gp120 to CD4 and the co-receptor CCR5 or CXCR4 facilitates HIV-1 entry and has the potential to trigger critical signaling that may favor viral replication. At advanced stages of the disease, HIV-1 infection results in dramatic induction of T-cell (CD4+ T and CD8+ T cell) apoptosis both in infected and uninfected bystander T cells, a hallmark of HIV-1 pathogenesis. On the contrary, macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time.
In tumor cells, genes encoding transcription factors (TFs) are often amplified, deleted, rearranged via chromosomal translocation and inversion, or subjected to point mutations that result in a gain- or loss-of- function. In hematopoietic cancers and solid tumors, the translocations and inversions increase or deregulate transcription of the oncogene. Recurrent chromosome translocations generate novel fusion oncoproteins, which are common in myeloid cancers and soft-tissue sarcomas. The fusion proteins have aberrant transcriptional function compared to their wild-type counterparts. These fusion transcription factors alter expression of target genes, and thereby result in a variety of altered cellular properties that contribute to the tumourigenic process.
MicroRNA (miRNA) is a cluster of small non-encoding RNA molecules of 21 - 23 nucleotides in length, which controls gene expression post-transcriptionally either via the degradation of target mRNAs or the inhibition of protein translation. Using high-throughput profiling, dysregulation of miRNAs has been widely observed in different stages of cancer. The upregulation (overexpression) of specific miRNAs could lead to the repression of tumor suppressor gene expression, and conversely the downregulation of specific miRNAs could result in an increase of oncogene expression; both these situations induce subsequent malignant effects on cell proliferation, differentiation, and apoptosis that lead to tumor growth and progress. The miRNA signatures of cancer observed in various studies differ significantly. These inconsistencies occur due to the differences in the study populations and methodologies used. This pathway map shows the summarized results from various studies in 9 cancers, each of which is presented in a review article.
Reactive oxygen species (ROS), whose concentration increases in senescent cells due to oncogenic RAS-induced mitochondrial dysfunction (Moiseeva et al. 2009) or due to environmental stress, cause DNA damage in the form of double strand breaks (DSBs) (Yu and Anderson 1997). In addition, persistent cell division fueled by oncogenic signaling leads to replicative exhaustion, manifested in critically short telomeres (Harley et al. 1990, Hastie et al. 1990). Shortened telomeres are no longer able to bind the protective shelterin complex (Smogorzewska et al. 2000, de Lange 2005) and are recognized as damaged DNA.
The evolutionarily conserved MRN complex, consisting of MRE11A (MRE11), RAD50 and NBN (NBS1) subunits, binds DSBs (Lee and Paull 2005) and shortened telomeres that are no longer protected by shelterin (Wu et al. 2007). Once bound to the DNA, the MRN complex recruits and activates ATM kinase (Lee and Paull 2005, Wu et al. 2007), leading to phosphorylation of ATM targets, including TP53 (p53) (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998). TP53, phosphorylated on serine S15 by ATM, binds the CDKN1A (also known as p21, CIP1 or WAF1) promoter and induces CDKN1A transcription (El-Deiry et al. 1993, Karlseder et al. 1999). CDKN1A inhibits the activity of CDK2, leading to G1/S cell cycle arrest (Harper et al. 1993, El-Deiry et al. 1993).
SMURF2 is upregulated in response to telomere attrition in human fibroblasts and induces senecscent phenotype through RB1 and TP53, independently of its role in TGF-beta-1 signaling (Zhang and Cohen 2004). The exact mechanism of SMURF2 involvement is senescence has not been elucidated
The ability of HSF1 to respond to cellular stresses is under negative regulation by chaperones, modulation of nucleocytoplasmic shuttling, post-translational modifications and transition from monomeric to trimeric state
COP1 is one of several E3 ubiquitin ligases responsible for the tight regulation of p53 abundance. Following DNA damage, COP1 dissociates from p53 and is inactivated by autodegradation via a pathway involving ATM phosphorylation of COP1 on Ser(387), autoubiquitination and proteasome mediated degradation. Destruction of COP1 results in abrogation of the ubiquitination and degradation of p53 (Dornan et al., 2006)
Homology directed repair (HDR) through single strand annealing (SSA), similar to HDR through homologous recombination repair (HRR), involves extensive resection of DNA double strand break ends (DSBs), preceded by ATM activation and formation of the so-called ionizing radiation induced foci (IRIF) at DNA DSB sites. Following ATM activation and foci formation, the two-step resection is initiated by the MRN complex (MRE11A:RAD50:NBN) and RBBP8 (CtIP) associated with BRCA1:BARD1, and completed by EXO1 or DNA2 in cooperation with DNA helicases BLM, WRN and BRIP1 (BACH1) (Sartori et al. 2007, Yun and Hiom 2009, Eid et al. 2010, Nimonkar et al. 2011, Suhasini et al. 2011, Sturzenegger et al. 2014). Long 3'-ssDNA overhangs produced by extensive resection are coated by the RPA heterotrimer (RPA1:RPA2:RPA3), triggering ATR signaling. ATR signaling is needed for SSA, probably because of the related phosphorylation of RPA2 (Zou and Elledge 2003, Anantha et al. 2007, Liu et al. 2012).
RAD52 is the key mediator of SSA. Activated ATM phosphorylates and activates ABL1, and activated ABL1 subsequently phosphorylates pre-formed RAD52 heptameric rings, increasing their affinity for ssDNA (Honda et al. 2011). Phosphorylated RAD52 binds phosphorylated RPA heterotrimers on 3'-ssDNA overhangs at resected DNA DSBs. RAD52 also binds RAD51 and prevents formation of invasive RAD51 nucleofilaments involved in HRR (Chen et al. 1999, Van Dyck et al. 1999, Parsons et al. 2000, Jackson et al. 2002, Singleton et al. 2002).
RAD52 promotes annealing of two 3'-ssDNA overhangs when highly homologous directed repeats are present in both 3'-ssDNA overhangs. Nonhomologous regions lying 3' to the annealed repeats are displaced as 3'-flaps (Parsons et al. 2000, Van Dyck et al. 2001, Singleton et al. 2002, Stark et al. 2004, Mansour et al. 2008). The endonuclease complex composed of ERCC1 and ERCC4 (XPF) is subsequently recruited to SSA sites through direct interaction between RAD52 and ERCC4, leading to cleavage of 3' flaps (Motycka et al. 2004, Al-Minawi et al. 2008). The identity of a DNA ligase that closes the remaining single strand nicks (SSBs) to complete SSA-mediated repair is not known.
SSA results in deletion of one of the annealed repeats and the intervening DNA sequence between the two annealed repeats and is thus mutagenic
Homology directed repair (HDR) through homologous recombination is known as homologous recombination repair (HRR). HRR occurs after extensive resection of DNA double strand break (DSB) ends, which creates long 3'-ssDNA overhangs. RAD51 coats 3'-ssDNA overhangs in a BRCA2-controlled fashion, creating invasive RAD51 nucleofilaments. The RAD51 nucleofilament invades a sister chromatid DNA duplex, leading to D-loop formation. After the D-loop is extended by DNA repair synthesis, the resulting recombination intermediates in the form of extended D-loops or double Holliday junctions can be resolved through crossover- or non-crossover-generating processes (reviewed by Ciccia and Elledge 2010)
Detection of DNA double-strand breaks (DSBs) involves sensor proteins of the MRN complex, composed of MRE11A, RAD50 and NBN (NBS1). Binding of the MRN complex to DNA DSBs activates ATM-dependent DNA damage signaling cascade, by promoting KAT5 (Tip60) mediated acetylation of ATM and subsequent ATM autophosphorylation. Activated ATM triggers and coordinates recruitment of repair proteins to DNA DSBs (Beamish et al. 2002, Thompson and Schild 2002, Bakkenist et al. 2003, Lee and Paull 2005, Sun et al. 2005, Sun et al. 2007, Ciccia and Elledge 2010)
In the synthesis-dependent strand-annealing (SDSA) model of D-loop resolution, D-loop strands extended by DNA repair synthesis dissociate from their sister chromatid complements and reanneal with their original complementary strands, resulting in non-crossover products (Mitchel et al. 2010). SDSA is promoted by the DNA helicase RTEL1 (Barber et al. 2008, Uringa et al. 2012). Additional DNA synthesis occurs to fill the remaining single strand gap present in the reannealed DNA duplex. DNA polymerase alpha has been implicated in this late step of DNA repair synthesis (Levy et al. 2009), although RTEL1-mediated recruitment of PCNA-bound DNA polymerases may also be involved (Vannier et al. 2013). The remaining single strand nicks are closed by DNA ligases, possibly LIG1 or LIG3 (Mortusewicz et al. 2006, Puebla-Osorio et al. 2006)
Activated ATM phosphorylates a number of proteins involved in the DNA damage checkpoint and DNA repair (Thompson and Schild 2002, Ciccia and Elledge 2010), thereby triggering and coordinating accumulation of DNA DSB repair proteins in nuclear foci known as ionizing radiation-induced foci (IRIF). While IRIFs include chromatin regions kilobases away from the actual DSB site, this Reactome pathway represents simplified foci and events that happen proximal to the DNA DSB ends. In general, proteins localizing to the nuclear foci in response to ATM signaling are cooperatively retained at the DNA DSB site, forming a positive feedback loop and amplifying DNA damage response (Soutoglou and Misteli 2008).
Activated ATM phosphorylates the NBN (NBS1) subunit of the MRN complex (MRE11A:RAD50:NBN) (Gatei et al. 2000), as well as the nucleosome histone H2AFX (H2AX) on serine residue S139, producing gamma-H2AFX (gamma-H2AX) containing nucleosomes (Rogakou et al. 1998, Burma et al. 2001). H2AFX is phosphorylated on tyrosine 142 (Y142) under basal conditions (Xiao et al. 2009). After ATM-mediated phosphorylation of H2AFX on S139, tyrosine Y142 has to be dephosphorylated by EYA family phosphatases in order for the DNA repair to proceed and to avoid apoptosis induced by DNA DSBs (Cook et al. 2009). Gamma-H2AFX recruits MDC1 to DNA DSBs (Stucki et al. 2005). After ATM phosphorylates MDC1 (Liu et al. 2012), the MRN complex, gamma-H2AFX nucleosomes, and MDC1 serve as a core of the nuclear focus and a platform for the recruitment of other proteins involved in DNA damage signaling and repair (Lukas et al. 2004, Soutoglou and Misteli 2008).
RNF8 ubiquitin ligase binds phosphorylated MDC1 (Kolas et al. 2007) and, in cooperation with HERC2 and RNF168 (Bekker-Jensen et al. 2010, Campbell et al. 2012), ubiquitinates H2AFX (Mailand et al. 2007, Huen et al. 2007, Stewart et al. 2009, Doil et al. 2009) and histone demethylases KDM4A and KDM4B (Mallette et al. 2012).
Ubiquitinated gamma-H2AFX recruits UIMC1 (RAP80), promoting the assembly of the BRCA1-A complex at DNA DSBs. The BRCA1-A complex consists of RAP80, FAM175A (Abraxas), BRCA1:BARD1 heterodimer, BRCC3 (BRCC36), BRE (BRCC45) and BABAM1 (MERIT40, NBA1) (Wang et al. 2007, Wang and Elledge 2007)
Ubiquitin mediated degradation of KDM4A and KDM4B allows TP53BP1 (53BP1) to associate with histone H4 dimethylated on lysine K21 (H4K20Me2 mark) by WHSC1 at DNA DSB sites (Pei et al. 2011).
Once recruited to DNA DSBs, both BRCA1:BARD1 heterodimers and TP53BP1 are phosphorylated by ATM (Cortez et al. 1999, Gatei et al. 2000, Kim et al. 2006, Jowsey et al. 2007), which triggers recruitment and activation of CHEK2 (Chk2, Cds1) (Wang et al. 2002, Wilson and Stern 2008, Melchionna et al. 2000).
Depending on the cell cycle stage, BRCA1 and TP53BP1 competitively promote either homology directed repair (HDR) or nonhomologous end joining (NHEJ) of DNA DSBs. HDR through homologous recombination repair (HRR) or single strand annealing (SSA) is promoted by BRCA1 in association with RBBP8 (CtIP), while NHEJ is promoted by TP53BP1 in association with RIF1 (Escribano-Diaz et al. 2013)
D-loops generated after strand invasion and DNA repair synthesis during homologous recombination repair (HRR) can be resolved through Holliday junction intermediates.
A D-loop can be cleaved by the complex of MUS81 and EME1 (MUS81:EME1) or MUS81 and EME2 (MUS81:EME2) and resolved without the formation of double Holliday junctions, generating cross-over products. All steps involved in this process have not been elucidated (Osman et al. 2003, Schwartz et al. 2012, Pepe and West 2014).
Alternatively, double Holliday junctions can be created by ligation of crossed-strand intermediates. Double Holliday junctions can then be resolved through the action of the BLM helicase complex known as BTRR (BLM:TOP3A:RMI1:RMI2) (Wan et al. 2013, Bocquet et al. 2014). BLM-mediated resolution of Holliday junction intermediates prevents sister chromatid exchange (SCE) between mitotic chromosomes and generates non-crossover products. Mitotic SCE can result in the loss-of-heterozygosity (LOH), which can make the cell homozygous for deleterious recessive mutations (e.g. in tumor suppressor genes) (Wu and Hickson 2003). Double Holliday junctions can also be resolved by cleavage, mediated by GEN1 or the SLX-MUS complex (composed of SLX1A:SLX4 heterodimer and a heterodimer of MUS81 and EME1 or, possibly, EME2). The resolvase activity of GEN1 and SLX-MUS predominantly results in crossover products, with SCE (Fekairi et al. 2009, Wyatt et al. 2013, Sarbajna et al. 2014)
The nonhomologous end joining (NHEJ) pathway is initiated in response to the formation of DNA double-strand breaks (DSBs) induced by DNA-damaging agents, such as ionizing radiation. DNA DSBs are recognized by the MRN complex (MRE11A:RAD50:NBN), leading to ATM activation and ATM-dependent recruitment of a number of DNA damage checkpoint and repair proteins to DNA DSB sites (Lee and Paull 2005). The ATM phosphorylated MRN complex, MDC1 and H2AFX-containing nucleosomes (gamma-H2AX) serve as scaffolds for the formation of nuclear foci known as ionizing radiation induced foci (IRIF) (Gatei et al. 2000, Paull et al. 2000, Stewart et al. 2003, Stucki et al. 2005). Ultimately, both BRCA1:BARD1 heterodimers and TP53BP1 (53BP1) are recruited to IRIF (Wang et al. 2007, Pei et al. 2011, Mallette et al. 2012), which is necessary for ATM-mediated CHEK2 activation (Wang et al. 2002, Wilson et al. 2008). In G1 cells, TP53BP1 promotes NHEJ by recruiting RIF1 and PAX1IP, which displaces BRCA1:BARD1 and associated proteins from the DNA DSB site and prevents resection of DNA DSBs needed for homologous recombination repair (HRR) (Escribano-Diaz et al. 2013, Zimmermann et al. 2013, Callen et al. 2013). TP53BP1 also plays an important role in ATM-mediated phosphorylation of DCLRE1C (ARTEMIS) (Riballo et al. 2004, Wang et al. 2014). Ku70:Ku80 heterodimer (also known as the Ku complex or XRCC5:XRCC6) binds DNA DSB ends, competing away the MRN complex and preventing MRN-mediated resection of DNA DSB ends (Walker et al. 2001, Sun et al. 2012). The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs, PRKDC) is then recruited to DNA-bound Ku to form the DNA-PK holoenzyme. Two DNA-PK complexes, one at each side of the break, bring DNA DSB ends together, joining them in a synaptic complex (Gottlieb 1993, Yoo and Dynan 2000). DNA-PK complex recruits DCLRE1C (ARTEMIS) to DNA DSB ends (Ma et al. 2002). PRKDC-mediated phosphorylation of DCLRE1C, as well as PRKDC autophosphorylation, enables DCLRE1C to trim 3'- and 5'-overhangs at DNA DSBs, preparing them for ligation (Ma et al. 2002, Ma et al. 2005, Niewolik et al. 2006). The binding of inositol phosphate may additionally stimulate the catalytic activity of PRKDC (Hanakahi et al. 2000). Other factors, such as polynucleotide kinase (PNK), TDP1 or TDP2 may remove unligatable damaged nucleotides from 5'- and 3'-ends of the DSB, converting them to ligatable substrates (Inamdar et al. 2002, Gomez-Herreros et al. 2013). DNA ligase 4 (LIG4) in complex with XRCC4 (XRCC4:LIG4) is recruited to ligatable DNA DSB ends together with the XLF (NHEJ1) homodimer and DNA polymerases mu (POLM) and/or lambda (POLL) (McElhinny et al. 2000, Hsu et al. 2002, Malu et al. 2002, Ahnesorg et al. 2006, Mahajan et al. 2002, Lee et al. 2004, Fan and Wu 2004). After POLL and/or POLM fill 1- or 2-nucleotide long single strand gaps at aligned DNA DSB ends, XRCC4:LIG4 performs the ligation of broken DNA strands, thus completing NHEJ. The presence of NHEJ1 homodimer facilitates the ligation step, especially at mismatched DSB ends (Tsai et al. 2007). Depending on other types of DNA damage present at DNA DSBs, NHEJ can result in error-free products, produce dsDNA with microdeletions and/or mismatched bases, or result in translocations (reviewed by Povrik et al. 2012)
The presynaptic phase of homologous DNA pairing and strand exchange begins with the displacement of RPA from 3'-ssDNA overhangs created by extensive resection of DNA double strand break (DSB) ends. RPA is displaced by the joint action of RAD51 and BRCA2. BRCA2 nucleates RAD51 on 3'-ssDNA overhangs, leading to formation of invasive RAD51 nucleofilaments which are stabilized by the BCDX2 complex (RAD51B:RAD51C:RAD51D:XRCC2). Stable synaptic pairing between recombining DNA molecules involves the invasion of the homologous sister chromatid duplex DNA by the RAD51 nucleofilament and base-pairing between the invading ssDNA and the complementary sister chromatid DNA strand, while the non-complementary strand of the sister chromatid DNA duplex is displaced. This results in the formation of a D-loop structure (Sung et al., 2003). PALB2 and RAD51AP1 synergistically stimulate RAD51 recombinase activity and D-loop formation. PALB2 simultaneously interacts with RAD51, BRCA2 and RAD51AP1 (Modesti et al. 2007, Wiese et al. 2007, Buisson et al. 2010, Dray et al. 2010). PALB2 also interacts with BRCA1, and this interaction fine-tunes the localization of BRCA2 and RAD51 at DNA DSBs (Zhang et al. 2009, Sy et al. 2009). The CX3 complex, composed of RAD51C and XRCC3, binds D-loop structures through interaction with PALB2 and may be involved in the resolution of Holliday junctions (Chun et al. 2013, Park et al. 2014).
While RAD52 promotes formation of invasive RAD51 nucleofilaments in yeast, human BRCA2 performs this function, while human RAD52 regulates single strand annealing (SSA) (reviewed by Ciccia and Elledge 2010)
Homology directed repair (HDR) through homologous recombination (HRR) or single strand annealing (SSA) requires extensive resection of DNA double strand break (DSB) ends (Thompson and Limoli 2003, Ciccia and Elledge 2010). The resection is performed in a two-step process, where the MRN complex (MRE11A:RAD50:NBN) and RBBP8 (CtIP) bound to BRCA1 initiate the resection. This step is regulated by the complex of CDK2 and CCNA (cyclin A), ensuring the initiation of HRR during S and G2 phases of the cell cycle, when sister chromatids are available. The initial resection is also regulated by ATM-mediated phosphorylation of RBBP8 and CHEK2-mediated phosphorylation of BRCA1 (Chen et al. 2008, Yun and Hiom 2009, Buis et al. 2012, Wang et al. 2013, Davies et al. 2015, Parameswaran et al. 2015). After the initial resection, DNA nucleases EXO1 and/or DNA2 perform long-range resection, which is facilitated by DNA helicases BLM or WRN, as well as BRIP1 (BACH1) (Chen et al. 2008, Nimonkar et al. 2011, Sturzenegger et al. 2014, Suhasini et al. 2011). The resulting long 3'-ssDNA overhangs are coated by the RPA heterotrimers (RPA1:RPA2:RPA3), which recruit ATR:ATRIP complexes to DNA DSBs and, in collaboration with RAD17:RFC and RAD9:HUS1:RAD1 complexes, and TOPBP1 and RHNO1, activate ATR signaling. Activated ATR phosphorylates RPA2 and activates CHEK1 (Cotta-Ramusino et al. 2011), both of which are necessary prerequisites for the subsequent steps in HRR and SSA
The presynaptic phase of homologous DNA pairing and strand exchange during homologous recombination repair (HRR) begins with the displacement of RPA from ssDNA (Thompson and Limoli 2003) by the joint action of RAD51 and BRCA2. CHEK1-mediated phosphorylation of RAD51 and BRCA2 (Sorensen et al. 2005, Bahassi et al. 2008) is needed for BRCA2-mediated nucleation of RAD51 on 3'-ssDNA overhangs, RPA displacement and formation of RAD51 nucleofilaments (Yang et al. 2005, Jensen et al. 2010, Liu et al. 2010, Thorslund et al. 2010). Invasive RAD51 nucleofilaments are stabilized by the BCDX2 complex composed of RAD51B, RAD51C, RAD51D and XRCC2 (Masson et al. 2001, Chun et al. 2013, Amunugama et al. 2013)
Several DNA repair genes contain p53 response elements and their transcription is positively regulated by TP53 (p53). TP53-mediated regulation probably ensures increased protein level of DNA repair genes under genotoxic stress.
TP53 directly stimulates transcription of several genes involved in DNA mismatch repair, including MSH2 (Scherer et al. 2000, Warnick et al. 2001), PMS2 and MLH1 (Chen and Sadowski 2005). TP53 also directly stimulates transcription of DDB2, involved in nucleotide excision repair (Tan and Chu 2002), and FANCC, involved in the Fanconi anemia pathway that repairs DNA interstrand crosslinks (Liebetrau et al. 1997). Other p53 targets that can influence DNA repair functions are RRM2B (Kuo et al. 2012), XPC (Fitch et al. 2003), GADD45A (Amundson et al. 2002), CDKN1A (Cazzalini et al. 2010) and PCNA (Xu and Morris 1999). Interestingly, the responsiveness of some of these DNA repair genes to p53 activation has been shown in human cells but not for orthologous mouse genes (Jegga et al. 2008, Tan and Chu 2002). Contrary to the positive modulation of nucleotide excision repair (NER) and mismatch repair (MMR), p53 can negatively modulate base excision repair (BER), by down-regulating the endonuclease APEX1 (APE1), acting in concert with SP1 (Poletto et al. 2016).
Expression of several DNA repair genes is under indirect TP53 control, through TP53-mediated stimulation of cyclin K (CCNK) expression (Mori et al. 2002). CCNK is the activating cyclin for CDK12 and CDK13 (Blazek et al. 2013). The complex of CCNK and CDK12 binds and phosphorylates the C-terminal domain of the RNA polymerase II subunit POLR2A, which is necessary for efficient transcription of long DNA repair genes, including BRCA1, ATR, FANCD2, FANCI, ATM, MDC1, CHEK1 and RAD51D. Genes whose transcription is regulated by the complex of CCNK and CDK12 are mainly involved in the repair of DNA double strand breaks and/or the Fanconi anemia pathway (Blazek et al. 2011, Cheng et al. 2012, Bosken et al. 2014, Bartkowiak and Greenleaf 2015, Ekumi et al. 2015)
Apoptotic transcriptional targets of TP53 include genes that regulate the permeability of the mitochondrial membrane and/or cytochrome C release, such as BAX, BID, PMAIP1 (NOXA), BBC3 (PUMA) and probably BNIP3L, AIFM2, STEAP3, TRIAP1 and TP53AIP1 (Miyashita and Reed 1995, Oda et al. 2000, Samuels-Lev et al. 2001, Nakano and Vousden 2001, Sax et al. 2002, Passer et al. 2003, Bergamaschi et al. 2004, Li et al. 2004, Fei et al. 2004, Wu et al. 2004, Park and Nakamura 2005, Patel et al. 2008, Wang et al. 2012, Wilson et al. 2013), thus promoting the activation of the apoptotic pathway.
Transcriptional activation of TP53AIP1 requires phosphorylation of TP53 at serine residue S46 (Oda et al. 2000, Taira et al. 2007). Phosphorylation of TP53 at S46 is regulated by another TP53 pro-apoptotic target, TP53INP1 (Okamura et al. 2001, Tomasini et al. 2003)
TP53 (p53) transcriptionally regulates cytosolic caspase activators, such as APAF1, PIDD1, and NLRC4, and caspases themselves, such as CASP1, CASP6 and CASP10. These caspases and their activators are involved either in the intrinsic apoptosis pathway or in the extrinsic apoptosis pathway triggerred by death receptors or the inflammation-related cell death pyroptosis (Lin et al. 2000, Robles et al. 2001, Gupta et al. 2001, MacLachlan and El-Deiry 2002, Rikhof et al. 2003, Sadasivam et al. 2005, Brough and Rothwell 2007)
Phosphorylation of TP53 (p53) at the N-terminal serine residues S15 and S20 plays a critical role in protein stabilization as phosphorylation at these sites interferes with binding of the ubiquitin ligase MDM2 to TP53. Several different kinases can phosphorylate TP53 at S15 and S20. In response to double strand DNA breaks, S15 is phosphorylated by ATM (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998), and S20 by CHEK2 (Chehab et al. 1999, Chehab et al. 2000, Hirao et al. 2000). DNA damage or other types of genotoxic stress, such as stalled replication forks, can trigger ATR-mediated phosphorylation of TP53 at S15 (Lakin et al. 1999, Tibbetts et al. 1999) and CHEK1-mediated phosphorylation of TP53 at S20 (Shieh et al. 2000). In response to various types of cell stress, NUAK1 (Hou et al. 2011), CDK5 (Zhang et al. 2002, Lee et al. 2007, Lee et al. 2008), AMPK (Jones et al. 2005) and TP53RK (Abe et al. 2001, Facchin et al. 2003) can phosphorylate TP53 at S15, while PLK3 (Xie, Wang et al. 2001, Xie, Wu et al. 2001) can phosphorylate TP53 at S20.
Phosphorylation of TP53 at serine residue S46 promotes transcription of TP53-regulated apoptotic genes rather than cell cycle arrest genes. Several kinases can phosphorylate S46 of TP53, including ATM-activated DYRK2, which, like TP53, is targeted for degradation by MDM2 (Taira et al. 2007, Taira et al. 2010). TP53 is also phosphorylated at S46 by HIPK2 in the presence of the TP53 transcriptional target TP53INP1 (D'Orazi et al. 2002, Hofmann et al. 2002, Tomasini et al. 2003). CDK5, in addition to phosphorylating TP53 at S15, also phosphorylates it at S33 and S46, which promotes neuronal cell death (Lee et al. 2007).
MAPKAPK5 (PRAK) phosphorylates TP53 at serine residue S37, promoting cell cycle arrest and cellular senescence in response to oncogenic RAS signaling (Sun et al. 2007).
NUAK1 phosphorylates TP53 at S15 and S392, and phosphorylation at S392 may contribute to TP53-mediated transcriptional activation of cell cycle arrest genes (Hou et al. 2011). S392 of TP53 is also phosphorylated by the complex of casein kinase II (CK2) bound to the FACT complex, enhancing transcriptional activity of TP53 in response to UV irradiation (Keller et al. 2001, Keller and Lu 2002).
The activity of TP53 is inhibited by phosphorylation at serine residue S315, which enhances MDM2 binding and degradation of TP53. S315 of TP53 is phosphorylated by Aurora kinase A (AURKA) (Katayama et al. 2004) and CDK2 (Luciani et al. 2000). Interaction with MDM2 and the consequent TP53 degradation is also increased by phosphorylation of TP53 threonine residue T55 by the transcription initiation factor complex TFIID (Li et al. 2004).
Aurora kinase B (AURKB) has been shown to phosphorylate TP53 at serine residue S269 and threonine residue T284, which is possibly facilitated by the binding of the NIR co-repressor. AURKB-mediated phosphorylation was reported to inhibit TP53 transcriptional activity through an unknown mechanism (Wu et al. 2011). A putative direct interaction between TP53 and AURKB has also been described and linked to TP53 phosphorylation and S183, T211 and S215 and TP53 degradation (Gully et al. 2012)
In unstressed cells, TP53 (p53) has a short half-life as it undergoes rapid ubiquitination and proteasome-mediated degradation. The E3 ubiquitin ligase MDM2, which is a transcriptional target of TP53, plays the main role in TP53 protein down-regulation (Wu et al. 1993). MDM2 forms homodimers and homo-oligomers, but also functions as a heterodimer/hetero-oligomer with MDM4 (MDMX) (Sharp et al. 1999, Cheng et al. 2011, Huang et al. 2011, Pant et al. 2011). The heterodimers of MDM2 and MDM4 may be especially important for downregulation of TP53 during embryonic development (Pant et al. 2011).
The nuclear localization of MDM2 is positively regulated by AKT- or SGK1- mediated phosphorylation (Mayo and Donner 2001, Zhou et al. 2001, Amato et al. 2009, Lyo et al. 2010). Phosphorylation of MDM2 by CDK1 or CDK2 decreases affinity of MDM2 for TP53 (Zhang and Prives 2001). ATM and CHEK2 kinases, activated by double strand DNA breaks, phosphorylate TP53, reducing its affinity for MDM2 (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998, Chehab et al. 1999, Chehab et al. 2000). At the same time, ATM phosphorylates MDM2, preventing MDM2 dimerization (Cheng et al. 2009, Cheng et al. 2011). Both ATM and CHEK2 phosphorylate MDM4, triggering MDM2-mediated ubiquitination of MDM4 (Chen et al. 2005, Pereg et al. 2005). Cyclin G1 (CCNG1), transcriptionally induced by TP53, targets the PP2A phosphatase complex to MDM2, resulting in dephosphorylation of MDM2 at specific sites, which can have either a positive or a negative impact on MDM2 function (Okamoto et al. 2002).
In contrast to MDM2, E3 ubiquitin ligases RNF34 (CARP1) and RFFL (CARP2) can ubiquitinate phosphorylated TP53 (Yang et al. 2007).
In addition to ubiquitinating MDM4 (Pereg et al. 2005), MDM2 can also undergo auto-ubiquitination (Fang et al. 2000). MDM2 and MDM4 can be deubiquitinated by the ubiquitin protease USP2 (Stevenson et al. 2007, Allende-Vega et al. 2010). The ubiquitin protease USP7 can deubiquitinate TP53, but in the presence of DAXX deubiquitinates MDM2 (Li et al. 2002, Sheng et al. 2006, Tang et al. 2006).
The tumor suppressor p14-ARF, expressed from the CDKN2A gene in response to oncogenic or oxidative stress, forms a tripartite complex with MDM2 and TP53, sequesters MDM2 from TP53, and thus prevents TP53 degradation (Zhang et al. 1998, Parisi et al. 2002, Voncken et al. 2005).
For review of this topic, please refer to Kruse and Gu 2009
TP53 (p53) undergoes methylation on several lysine and arginine residues, which modulates its transcriptional activity.
PRMT5, recruited to TP53 as part of the ATM-activated complex that includes TTC5, JMY and EP300 (p300), methylates TP53 arginine residues R333, R335 and R337. PRMT5-mediated methylation promotes TP53-stimulated expression of cell cycle arrest genes (Shikama et al. 1999, Demonacos et al. 2001, Demonacos et al. 2004, Adams et al. 2008, Adams et al. 2012). SETD9 (SET9) methylates TP53 at lysine residue K372, resulting in increased stability and activity of TP53 (Chuikov et al. 2004, Couture et al. 2006, Bai et al. 2011).
TP53 transcriptional activity is repressed by SMYD2-mediated methylation of TP53 at lysine residue K370 (Huang et al. 2006). Dimethylation of TP53 at lysine residue K373 by the complex of methyltransferases EHMT1 and EHMT2 also represses TP53-mediated transcription (Huang et al. 2010). The chromatin compaction factor L3MBTL1 binds TP53 monomethylated at lysine K382 by SETD8 (SET8) and, probably through changing local chromatin architecture, represses transcription of TP53 targets (West et al. 2010). The histone lysine-specific demethylase LSD1 interacts with TP53 and represses p53-mediated transcriptional activation (Huang et al. 2007). PRMT1 and CARM1 can also modulate p53 functions in a cooperative manner (An et al. 2004)
Throughout the cell cycle, the genome is constantly monitored for damage, resulting either from errors of replication, by-products of metabolism or through extrinsic sources such as ultra-violet or ionizing radiation. The different DNA damage checkpoints act to inhibit or maintain the inhibition of the relevant CDK that will control the next cell cycle transition. The G2 DNA damage checkpoint prevents mitotic entry solely through T14Y15 phosphorylation of Cdc2 (Cdk1). Failure of the G2 DNA damage checkpoint leads to catastrophic attempts to segregate unrepaired chromosomes
Later studies pin-pointed that a single serine (Ser-15) was phosphorylated by ATM and phosphorylation of Ser-15 was rapidly-induced in IR-treated cells and this response was ATM-dependent (Canman et al, 1998; Banin et al, 1998 and Khanna et al, 1998). ATM also regulates the phosphorylation of p53 at other sites, especially Ser-20, by activating other serine/threonine kinases in response to IR (Chehab et al, 2000; Shieh et al, 2000; Hirao et al 2000). Phosphorylation of p53 at Ser-20 interferes with p53-MDM2 interaction. MDM2 is transcriptionally activated by p53 and is a negative regulator of p53 that targets it for degradation (Haupt et al, 1997; Kubbutat et al, 1997). In addition modification of MDM2 by ATM also affects p53 stabilization (Maya et al, 2001)
Meiotic recombination exchanges segments of duplex DNA between chromosomal homologs, generating genetic diversity (reviewed in Handel and Schimenti 2010, Inagaki et al. 2010, Cohen et al. 2006). There are two forms of recombination: non-crossover (NCO) and crossover (CO). In mammals, the former is required for correct pairing and synapsis of homologous chromosomes, while CO intermediates called chiasmata are required for correct segregation of bivalents.Meiotic recombination is initiated by double-strand breaks created by SPO11, which remains covalently attached to the 5' ends after cleavage. SPO11 is removed by cleavage of single DNA strands adjacent to the covalent linkage. The resulting 5' ends are further resected to produce protruding 3' ends. The single-stranded 3' ends are bound by RAD51 and DMC1, homologs of RecA that catalyze a search for homology between the bound single strand and duplex DNA of the chromosomal homolog. RAD51 and DMC1 then catalyze the invasion of the single strand into the homologous duplex and the formation of a D-loop heteroduplex. Approximately 90% of heteroduplexes are resolved without crossovers (NCO), probably by synthesis-dependent strand annealing.The invasive strand is extended along the homolog and ligated back to its original duplex, creating a double Holliday junction. The mismatch repair proteins MSH4, MSH5 participate in this process, possibly by stabilizing the duplexes. The mismatch repair proteins MLH1 and MLH3 are then recruited to the double Holliday structure and an unidentified resolvase (Mus81? Gen1?) cleaves the junctions to yield a crossover. Crossovers are not randomly distributed: The histone methyltransferase PRDM9 recruits the recombination machinery to genetically determined hotspots in the genome and each incipient crossover somehow inhibits formation of crossovers nearby, a phenomenon called crossover interference. Each chromosome bivalent, including the X-Y body in males, has at least one crossover and this is required for meiosis to proceed correctly