241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Sarcoplasmic reticulum membrane Membrane Sarcoplasmic reticulum Note=The number of predictedtransmembrane domains varies between orthologs, but both N-terminus and C-terminus seem to be cytoplasmic
Function (UniProt annotation)
Calcium channel that mediates the release of Ca(2+) fromthe sarcoplasmic reticulum into the cytoplasm and thereby plays akey role in triggering cardiac muscle contraction Aberrantchannel activation can lead to cardiac arrhythmia In cardiacmyocytes, calcium release is triggered by increased Ca(2+) levelsdue to activation of the L-type calcium channel CACNA1C Thecalcium channel activity is modulated by formation ofheterotetramers with RYR3 Required for cellular calcium ionhomeostasis Required for embryonic heart development
Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs).The other principal source of Ca2+ for signalling is the internal stores that are located primarily in the endoplasmic/sarcoplasmic reticulum (ER/SR), in which inositol-1,4,5-trisphosphate receptors (IP3Rs) or ryanodine receptors (RYRs) regulate the release of Ca2+. The principal activator of these channels is Ca2+ itself and this process of Ca2+-induced Ca2+ release is central to the mechanism of Ca2+ signalling. Various second messengers or modulators also control the release of Ca2+. IP3, which is generated by pathways using different isoforms of phospholipase C (PLCbeta, delta, epsilon, gamma and zeta), regulates the IP3Rs. Cyclic ADP-ribose (cADPR) releases Ca2+ via RYRs. Nicotinic acid adenine dinucleotide phosphate (NAADP) may activate a distinct Ca2+ release mechanism on separate acidic Ca2+ stores. Ca2+ release via the NAADP-sensitive mechanism may also feedback onto either RYRs or IP3Rs. cADPR and NAADP are generated by CD38. This enzyme might be sensitive to the cellular metabolism, as ATP and NADH inhibit it.The influx of Ca2+ from the environment or release from internal stores causes a very rapid and dramatic increase in cytoplasmic calcium concentration, which has been widely exploited for signal transduction. Some proteins, such as troponin C (TnC) involved in muscle contraction, directly bind to and sense Ca2+. However, in other cases Ca2+ is sensed through intermediate calcium sensors such as calmodulin (CALM).
cAMP is one of the most common and universal second messengers, and its formation is promoted by adenylyl cyclase (AC) activation after ligation of G protein-coupled receptors (GPCRs) by ligands including hormones, neurotransmitters, and other signaling molecules. cAMP regulates pivotal physiologic processes including metabolism, secretion, calcium homeostasis, muscle contraction, cell fate, and gene transcription. cAMP acts directly on three main targets: protein kinase A (PKA), the exchange protein activated by cAMP (Epac), and cyclic nucleotide-gated ion channels (CNGCs). PKA modulates, via phosphorylation, a number of cellular substrates, including transcription factors, ion channels, transporters, exchangers, intracellular Ca2+ -handling proteins, and the contractile machinery. Epac proteins function as guanine nucleotide exchange factors (GEFs) for both Rap1 and Rap2. Various effector proteins, including adaptor proteins implicated in modulation of the actin cytoskeleton, regulators of G proteins of the Rho family, and phospholipases, relay signaling downstream from Rap.
Contraction of the heart is a complex process initiated by the electrical excitation of cardiac myocytes (excitation-contraction coupling, ECC). In cardiac myocytes, Ca2+ influx induced by activation of voltage-dependent L-type Ca channels (DHP receptors) upon membrane depolarization triggers the release of Ca2+ via Ca2+ release channels (ryanodine receptors) of sarcoplasmic reticulum (SR) through a Ca2+ -induced Ca release (CICR) mechanism. Ca2+ ions released via the CICR mechanism diffuse through the cytosolic space to contractile proteins to bind to troponinC resulting in the release of inhibition induced by troponinI. The Ca2+ binding to troponinC thereby triggers the sliding of thin and thick filaments, that is, the activation of a crossbridge and subsequent cardiac force development and/or cell shortening. Recovery occurs as Ca2+ is pumped out of the cell by the Na+/Ca2+ exchanger (NCX) or is returned to the sarcoplasmic reticulum (SR) by sarco(endo)plasmic Ca2+ -ATPase (SERCA) pumps on the non-junctional region of the SR.
Cardiac myocytes express at least six subtypes of adrenergic receptor (AR) which include three subtypes of beta-AR (beta-1, beta-2, beta-3) and three subtypes of the alpha-1-AR (alpha-1A, alpha-1B, and alpha-1C). In the human heart the beta-1-AR is the pre- dominate receptor. Acute sympathetic stimulation of cardiac beta-1-ARs induces positive inotropic and chronotropic effects, the most effective mechanism to acutely increase output of the heart, by coupling to Gs, formation of cAMP by adenylyl cyclase (AC), and PKA- dependent phosphorylation of various target proteins (e.g., ryanodine receptor [RyR]; phospholamban [PLB], troponin I [TnI], and the L-type Ca2+ channel [LTCC]). Chronic beta-1-AR stimulation is detrimental and induces cardiomyocyte hypertrophy and apoptosis. beta-2-AR coupled to Gs exerts a proapoptotic action as well as beta-1-AR, while beta-2-AR coupled to Gi exerts an antiapoptotic action.
Apelin is an endogenous peptide capable of binding the apelin receptor (APJ), which was originally described as an orphan G-protein-coupled receptor. Apelin and APJ are widely expressed in various tissues and organ systems. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, cell proliferation and energy metabolism regulation. On the other hand, this ligand receptor couple is also involved in several pathologies including diabetes, obesity, cardiovascular disease and cancer.
Circadian entrainment is a fundamental property by which the period of the internal biological clock is entrained by recurring exogenous signals, such that the organism's endocrine and behavioral rhythms are synchronized to environmental cues. In mammals, a master clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and may synchronize circadian oscillators in peripheral tissues. Light signal is the dominant synchronizer for master SCN clock. Downstream from the retina, glutamate and PACAP are released and trigger the activation of signal transduction cascades, including CamKII and nNOS activity, cAMP- and cGMP-dependent protein kinases, and mitogen-activated protein kinase (MAPK). Of non-photic entrainment, important phase shifting capabilities have been found for melatonin, which inhibits light-induced phase shifts through inhibition of adenylate cyclase (AC). Multiple entrainment pathways converge into CREB regulation. In turn, phosphorylated CREB activates clock gene expression.
Pancreatic beta cells are specialised endocrine cells that continuously sense the levels of blood sugar and other fuels and, in response, secrete insulin to maintain normal fuel homeostasis. Glucose-induced insulin secretion and its potentiation constitute the principal mechanism of insulin release. Glucose is transported by the glucose transporter (GLUT) into the pancreatic beta-cell. Metabolism of glucose generates ATP, which inhibits ATP-sensitive K+ channels and causes voltage-dependent Ca2+ influx. Elevation of [Ca2+]i triggers exocytotic release of insulin granules. Insulin secretion is further regulated by several hormones and neurotransmitters. Peptide hormones, such as glucagon-like peptide 1 (GLP-1), increase cAMP levels and thereby potentiate insulin secretion via the combined action of PKA and Epac2. Achetylcholine (ACh), a major parasympathetic neurotransmitter, binds to Gq-coupled receptors and activates phospholipase C- (PLC-), and the stimulatory effects involve activation of protein kinase C (PKC), which stimulates exocytosis. In addition, ACh mobilizes intracellular Ca2+ by activation of IP3 receptors.
Oxytocin (OT) is a nonapeptide synthesized by the magno-cellular neurons located in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus. It exerts a wide variety of central and peripheral effects. However, its best-known and most well-established roles are stimulation of uterine contractions during parturition and milk release during lactation. Oxytocin also influences cardiovascular regulation and various social behaviors. The actions of OT are all mediated by one type of OT receptor (OTR). This is a transmembrane receptor belonging to the G-protein-coupled receptor superfamily. The main signaling pathway is the Gq/PLC/Ins3 pathway, but the MAPK and the RhoA/Rho kinase pathways are also activated, contributing to increased prostaglandin production and direct contractile effect on myometrial cells. In the cardiovascular system, OTR is associated with the ANP-cGMP and NO-cGMP pathways, which reduce the force and rate of contraction and increase vasodilatation.
The pancreas performs both exocrine and endocrine functions. The exocrine pancreas consists of two parts, the acinar and duct cells. The primary functions of pancreatic acinar cells are to synthesize and secrete digestive enzymes. Stimulation of the cell by secretagogues such as acetylcholine (ACh) and cholecystokinin (CCK) causes the generation of an intracellular Ca2+ signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. The major task of pancreatic duct cells is the secretion of fluid and bicarbonate ions (HCO3-), which neutralize the acidity of gastric contents that enter the duodenum. An increase in intracellular cAMP by secretin is one of the major signals of pancreatic HCO3- secretion. Activation of the CFTR Cl- channel and the CFTR-dependent Cl-/HCO3- exchange activities is responsible for cAMP-induced HCO3- secretion.
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder with an autosomal dominant pattern of inheritance that is characterized by hypertrophy of the left ventricles with histological features of myocyte hypertrophy, myfibrillar disarray, and interstitial fibrosis. HCM is one of the most common inherited cardiac disorders, with a prevalence in young adults of 1 in 500. Hundreds of mutations in the genes that encode protein constituents of the sarcomere have been identified in HCM. These mutations increase the Ca2+ sensitivity of cardiac myofilaments. Increased myofilament Ca2+ sensitivity is expected to increase the ATP utilization by actomyosin at submaximal Ca2+ concentrations, which might cause an imbalance in energy supply and demand in the heart under severe stress. The inefficient use of ATP suggests that an inability to maintain normal ATP levels could be the central abnormality. This theory might be supported by the discovery of the role of a mutant PRKAG2 gene in HCM, which in active form acts as a central sensing mechanism protecting cells from depletion of ATP supplies. The increase in the myfilament Ca2+ sensitivity well account for the diastolic dysfunction of model animals as well as human patients of HCM. It has been widely proposed that left ventricular hypertrophy is not a primary manifestation but develops as compensatory response to sarcomere dysfunction.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure, and sudden death. The hallmark pathological findings are progressive myocyte loss and fibrofatty replacement, with a predilection for the right ventricle. A number of genetic studies have identified mutations in various components of the cardiac desmosome that have important roles in the pathogenesis of ARVC. Disruption of desmosomal function by defective proteins might lead to death of myocytes under mechanical stress. The myocardial injury may be accompanied by inflammation. Since regeneration of cardiac myocytes is limited, repair by fibrofatty replacement occurs. Several studies have implicated that desmosome dysfunction results in the delocalization and nuclear translocation of plakoglobin. As a result, competition between plakoglobin and beta-catenin will lead to the inhibition of Wnt/beta-catenin signaling, resulting in a shift from a myocyte fate towards an adipocyte fate of cells. The ryanodine receptor plays a crucial part in electromechanical coupling by control of release of calcium from the sarcoplasmic reticulum into the cytosol. Therefore, defects in this receptor could result in an imbalance of calcium homeostasis that might trigger cell death.
Dilated cardiomyopathy (DCM) is a heart muscle disease characterised by dilation and impaired contraction of the left or both ventricles that results in progressive heart failure and sudden cardiac death from ventricular arrhythmia. Genetically inherited forms of DCM (familial DCM) have been identified in 25-35% of patients presenting with this disease, and the inherited gene defects are an important cause of familial DCM. The pathophysiology may be separated into two categories: defects in force generation and defects in force transmission. In cases where an underlying pathology cannot be identified, the patient is diagnosed with an idiopathic DCM. Current hypotheses regarding causes of idiopathic DCM focus on myocarditis induced by enterovirus and subsequent autoimmune myocardium impairments. Antibodies to the beta1-adrenergic receptor (beta1AR), which are detected in a substantial number of patients with idiopathic DCM, may increase the concentration of intracellular cAMP and intracellular Ca2+, a condition often leading to a transient hyper-performance of the heart followed by depressed heart function and heart failure.
Ion channels that mediate sensations such as pain, warmth, cold, taste pressure and vision. Channels that mediate these sensations include acid-sensing ion channels (ASICs) (Wang & Xu 2011, Qadri et al. 2012, Deval et al. 2010) and the transient receptor potential channels (TRPCs) (Takahashi et al. 2012, Numata et al. 2011 in \TRP Channels\ Zhu, MX editor, CRC Press, 2011, Ramsey et al. 2006, Montell 2005). Many channels are sensitive to changes in calcium (Ca2+) levels, both inside and outside the cell. Examples are protein tweety homologs 2 and 3 (TTYH2, 3) (Suzuki 2006), bestrophins 1-4 (BEST1-4) (Sun et al. 2002, Tsunenari et al. 2003, Kunzelmann et al. 2009, Hartzell et al. 2008) and ryanodine receptor tetramers (RYRs) (Beard et al. 2009)