241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
DNA-directed RNA polymerase II subunit RPB1;RNA polymerase II subunit B1;2.7.7.6;DNA-directed RNA polymerase II subunit A;DNA-directed RNA polymerase III largest subunit;RNA-directed RNA polymerase II subunit RPB1;2.7.7.48;
Nucleus Cytoplasm Note=Hypophosphorylated form ismainly found in the cytoplasm, while the hyperphosphorylated andactive form is nuclear
Function (UniProt annotation)
DNA-dependent RNA polymerase catalyzes the transcriptionof DNA into RNA using the four ribonucleoside triphosphates assubstrates Largest and catalytic component of RNA polymerase IIwhich synthesizes mRNA precursors and many functional non-codingRNAs Forms the polymerase active center together with the secondlargest subunit Pol II is the central component of the basal RNApolymerase II transcription machinery It is composed of mobileelements that move relative to each other RPB1 is part of thecore element with the central large cleft, the clamp element thatmoves to open and close the cleft and the jaws that are thought tograb the incoming DNA template At the start of transcription, asingle-stranded DNA template strand of the promoter is positionedwithin the central active site cleft of Pol II A bridging helixemanates from RPB1 and crosses the cleft near the catalytic siteand is thought to promote translocation of Pol II by acting as aratchet that moves the RNA-DNA hybrid through the active site byswitching from straight to bent conformations at each step ofnucleotide addition During transcription elongation, Pol II moveson the template as the transcript elongates Elongation isinfluenced by the phosphorylation status of the C-terminal domain(CTD) of Pol II largest subunit (RPB1), which serves as a platformfor assembly of factors that regulate transcription initiation,elongation, termination and mRNA processing Regulation of geneexpression levels depends on the balance between methylation andacetylation levels of tha CTD-lysines (By similarity) Initiationor early elongation steps of transcription of growth-factors-induced immediate early genes are regulated by the acetylationstatus of the CTD (PubMed:24207025) Methylation and dimethylationhave a repressive effect on target genes expression (Bysimilarity) (Microbial infection) Acts as an RNA-dependent RNApolymerase when associated with small delta antigen of Hepatitisdelta virus, acting both as a replicate and transcriptase for theviral RNA circular genome
Huntington disease (HD) is an autosomal-dominant neurodegenerative disorder that primarily affects medium spiny striatal neurons (MSN). The symptoms are choreiform, involuntary movements, personality changes and dementia. HD is caused by a CAG repeat expansion in the IT15gene, which results in a long stretch of polyglutamine close to the amino-terminus of the HD protein huntingtin (Htt). Mutant Htt (mHtt) has effects both in the cytoplasm and in the nucleus. In the cytoplasm, full-length mHtt can interfere with BDNF vesicular transport on microtubules. This mutant protein also may lead to abnormal endocytosis and secretion in neurons, because normal Htt form a complex with the proteins Hip1, clathrin and AP2 that are involved in endocytosis. In addition, mHtt affects Ca2+ signaling by sensitizing InsP3R1 to activation by InsP3, stimulating NMDAR activity, and destabilizing mitochondrial Ca2+ handling. The mHtt translocates to the nucleus, where it forms intranuclear inclusions. Nuclear toxicity is believed to be caused by interference with gene transcription, leading to loss of transcription of neuroprotective molecules such as BDNF. While mHtt binds to p53 and upregulates levels of nuclear p53 as well as p53 transcriptional activity. Augmented p53 mediates mitochondrial dysfunction.
Herpes simplex virus (HSV) infections are very common worldwide, with the prevalence of HSV-1 reaching up to 80%-90%. Primary infection with HSV takes place in the mucosa, followed by the establishment of latent infection in neuronal ganglia. HSV is the main cause of herpes infections that lead to the formation of characteristic blistering lesion. HSV express multiple viral accessory proteins that interfere with host immune responses and are indispensable for viral replication. Among these proteins, the immediate early (IE) gene ICP0, ICP4, and ICP27 are essential for regulation of HSV gene expression in productive infection. On the other hand, ORF P and ORF O gene are transcribed during latency and blocks the expression of the IE genes, thus maintaining latent infection.
TFIIS is a transcription factor involved in different phases of transcription, occurring in a major ubiquitous form and other tissue specific forms. TFIIS stimulates RNA Pol II complex out of elongation arrest. Other transcription factors like ELL, Elongin family members and TFIIF interact directly with elongating Pol II and increase its elongation rate. These factors have been observed to act on naked DNA templates by suppressing transient pausing by the enzyme at all or most steps of nucleotide addition. In Drosophila, ELL is found at a large number of transcriptionally active sites on polytene chromosomes. In general, ELL is suspected to have more unidentified functions. Elongin is a heterotrimeric protein complex that stimulates the overall rate of elongation. In addition, Elongin may act as an E3 Ubiquitin ligase. Ubiquitylation of RNA Pol II occurs rapidly after genotoxic assault by UV light or chemicals, and results in degradation by proteasome. The FACT complex appears to promote elongation by facilitating passage of polymerase through chromatin. All these factors contribute to the formation of a processive elongation complex centered around the RNA Pol II complex positioned on the DNA:RNA hybrid. This enables the RNA Pol II elongation complex to function as a platform that coordinates mRNA processing and export (Reviewed by Shilatifard et al., 2003)
Transcription elongation by RNA polymerase II (RNAPII) is controlled by a number of trans-acting transcription elongation factors as well as by cis-acting elements. Transcription elongation is a rate-limiting step for proper mRNA production in which the phosphorylation of Pol II CTD is a crucial biochemical event. The role of CTD phosphorylation in transcription by Pol II is greatly impaired by protein kinase inhibitors such as 5,6-dichloro-1- ribofuranosylbenzimidazole (DRB), which block CTD phosphorylation and induce arrest of elongating Pol II. DRB-sensitive activation Pol II CTD during elongation has enabled the isolation of two sets of factors -Negative Elongation Factors (NELF) and DRB sensitivity inducing factor (DSIF). P-Tefb is a DRB-sensitive, cyclin-dependent CTD kinase composed of Cdk9 that carries out Serine-2 phosphorylation of Pol II CTD during elongation. The mechanism by which DSIF, NELF and P-TEFb act together in Pol II-regulated elongation is yet to be fully understood. Various biochemical evidences point to a model in which DSIF and NELF negatively regulate elongation through interactions with polymerase containing a hypophosphorylated CTD. Subsequent phosphorylation of the Pol II CTD by P-Tefb might promote elongation by inhibiting interactions of DSIF and NELF with the elongation complex
During the formation of the HIV elongation complex in the absence of HIV Tat, eongation factors are recruited to form the HIV-1 elongation complex (Hill and Sundquist 2013) and P-TEFb complex hyperphosphorylates RNA Pol II CTD (Hermann and Rice, 2005, Zhou et al., 2000)
This HIV-1 event was inferred from the corresponding human RNA Poll II transcription event. The details relevant to HIV-1 are described below. Formation of the early elongation complex involves hypophosphorylation of RNA Pol II CTD by FCP1P protein, association of the DSIF complex with RNA Pol II, and formation of DSIF:NELF:HIV-1 early elongation complex as described below (Mandal et al 2002; Kim et al 2003; Yamaguchi et al 2002)
To facilitate co-transcriptional capping, and thereby restrict the cap structure to RNAs made by RNA polymerase II, the capping enzymes bind directly to the RNA polymerase II. The C-terminal domain of the largest Pol II subunit contains several phosphorylation sites on its heptapeptide repeats. The capping enzyme guanylyltransferase and the methyltransferase bind specifically to CTD phosphorylated at Serine 5 within the CTD. Kinase subunit of TFIIH, Cdk7, catalyzes this phosphorylation event that occurs near the promoter. In addition, it has been shown that binding of capping enzyme to the Serine-5 phosphorylated CTD stimulates guanylyltransferase activity in vitro
Formation of the open complex exposes the template strand to the catalytic center of the RNA polymerase II enzyme. This facilitates formation of the first phosphodiester bond, which marks transcription initiation. As a result of this, the TFIIB basal transcription factor dissociates from the initiation complex.
The open transcription initiation complex is unstable and can revert to the closed state. Initiation at this stage requires continued (d)ATP-hydrolysis by TFIIH. Dinucleotide transcripts are not stably associated with the transcription complex. Upon dissociation they form abortive products. The transcription complex is also sensitive to inhibition by small oligo-nucleotides.
Dinucleotides complementary to position -1 and +1 in the template can also direct first phosphodiester bond formation. This reaction is independent on the basal transcription factors TFIIE and TFIIH and does not involve open complex formation. This reaction is sensitive to inhibition by single-stranded oligonucleotides
Expression of the integrated HIV-1 provirus is dependent on the host cell Pol II transcription machinery, but is regulated in critical ways by HIV-1 Tat and Rev proteins. The long terminal repeats (LTR) located at either end of the proviral DNA contain regulatory sequences that recruit cellular transcription factors. The U3 region of the 5' LTR contains numerous cis-acting elements that regulate Pol II-mediated transcription initiation. The full-length transcript, which encodes nine genes, functions as an mRNA and is packaged as genomic RNA. Smaller (subgenomic) viral mRNAs are generated by alternative splicing. The activities of Tat and Rev create two phases of gene expression (see Karn 1999; Cullen 1991). The Tat protein is an RNA specific trans-activator of LTR-mediated transcription. Association of Tat with TAR, a RNA stem-loop within the RNA leader sequence, is required for efficient elongation of the HIV-1 transcript. In the early phase of viral transcription, a multiply-spliced set of mRNAs is generated, producing the transcripts of the regulatory proteins, Tat, Rev, and Nef. In the late phase, Rev regulates nuclear export of HIV-1 mRNAs, repressing expression of the early regulatory mRNAs and promoting expression of viral structural proteins. Nuclear export of the unspliced and partially spliced late HIV-1 transcripts that encode the structural proteins requires the association of Rev with a cis-acting RNA sequence in the transcripts (Rev Response Element, RRE)
This HIV-1 event was inferred from the corresponding human RNA Poll II transcription event in Reactome. The details relevant to HIV-1 are described below. For a more detailed description of the general mechanism, see the link to the corresponding RNA Pol II transcription event below. \nThe formation of the HIV-1 elongation complex involves Tat mediated recruitment of P-TEFb(Cyclin T1:Cdk9) to the TAR sequence (Wei et al, 1998) and P-TEFb(Cyclin T1:Cdk9) mediated phosphorylation of the RNA Pol II CTD as well as the negative transcriptional elongation factors DSIF and NELF (Herrmann, 1995; Ivanov et al. 2000; Fujinaga et al. 2004; Zhou et al., 2004)
This event was inferred from the corresponding Reactome human Poll II transcription elongation event. The details specific to HIV-1 transcription elongation are described below. In the absence of the HIV-1 Tat protein, the RNA Pol II complexes associated with the HIV-1 template are non-processive. RNA Pol II is arrested after promoter clearance by the negative transcriptional elongation factors DSIF and NELF as occurs during early elongation of endogenous templates (Wada et al, 1998; Yamaguchi et al. 1999). This arrest cannot be overcome by P-TEFb mediated phosphorylation in the absence of Tat however, and elongation aborts resulting in the accumulation of short transcripts (Kao et al., 1987)
RNA Pol II arrest is believed to be a result of irreversible backsliding of the enzyme by ~7-14 nucleotides. TFIIS reactivates arrested RNA Pol II by promoting the excision of nascent transcript ~7-14 nucleotides upstream of the 3' end
The Tat protein is a viral transactivator protein that regulates HIV-1 gene expression by controlling RNA Pol II-mediated elongation (reviewed in Karn 1999; Taube et al. 1999; Liou et al. 2004; Barboric and Peterlin 2005). Tat appears to be required in order to overcome the arrest of RNA Pol II by the negative transcriptional elongation factors DSIF and NELF (Wada et al. 1998; Yamaguchi et al. 1999; Yamaguchi et al 2002; Fujinaga et al. 2004). While Pol II can associate with the proviral LTR and initiate transcription in the absence of Tat, these polymerase complexes are non-processive and dissociate from the template prematurely producing very short transcripts (Kao et al. 1987). Tat associates with the RNA element, TAR, which forms a stem loop structure in the leader RNA sequence (Dingwall et al. 1989). Tat also associates with the cellular kinase complex P-TEFb(Cyclin T1:Cdk9) and recruits it to the TAR stem loop structure (Herrmann, 1995) (Wei et al. 1998). This association between Tat, TAR and P-TEFb(Cyclin T1:Cdk9) is believed to bring the catalytic subunit of this kinase complex (Cdk9) in close proximity to Pol II where it hyperphosphorylates the CTD of RNA Pol II (Zhou et al. 2000). The RD subunits of NELF and the SPT5 subunit of DSIF, which associate through RD with the bottom stem of TAR, are also phosphorylated by P-TEFb(Cyclin T1:Cdk9) (Yamaguchi et al. 2002; Fujinaga et al. 2004; Ivanov et al. 2000). Phosphorylation of RD results in its dissociation from TAR. Thus, Tat appears to facilitate transcriptional elongation of the HIV-1 transcript by hyperphosphorylating the RNA Poll II CTD and by removing the negative transcription elongation factors from TAR. In addition, there is evidence that the association of Tat with P-TEFb(Cyclin T1:Cdk9) alters the substrate specificity of P-TEFb enhancing phosphorylation of ser5 residues in the CTD of RNA Pol II (Zhou et al. 2000)
RNA Pol II arrest is believed to be a result of irreversible backsliding of the enzyme by ~7-14 nucleotides. TFIIS reactivates arrested RNA Pol II by promoting the excision of nascent transcript ~7-14 nucleotides upstream of the 3' end
Like the mRNAs of the host cell, influenza virus mRNAs are capped and polyadenylated (reviewed in Neumann, 2004). The methylated caps, however, are scavenged from host cell mRNAs and serve as primers for viral RNA synthesis, a process termed 'cap-snatching' (Krug, 1981; Hagen, 1994). The PB2 polymerase protein binds the cap, activating endonucleolytic cleavage of the host mRNA by PB1. The 3' poly-A tracts on viral messages are generated by polymerase stuttering on poly-U tracts near the 5' end of the template vRNA (Robertson, 1981; Zheng, 1999). The second process allows polyadenylation of viral mRNAs when the host cell polyadenylation process has been inhibited (Engelhardt, 2006; Amorim, 2006). Notably, early transcripts (including NP and NS1) accumulate in the cytoplasm before late transcripts (M1, HA, and NS2), and in varying abundances, suggesting additional control mechanisms regulating viral gene expression (Shapiro, 1987; Hatada, 1989; Amorim, 2006)
Biogenesis of microRNAs (miRNAs) can be summarized in five steps (reviewed in Ketting 2011, Nowotny and Yang 2009, Kim et al. 2009, Chua et al. 2009, Hannon and He 2004):1. Transcription. miRNA transcripts may come from autonomously transcribed genes, they may be contained in cotranscripts with other genes, or they may be located in introns of host genes. Most miRNAs are transcribed by RNA polymerase II, however a few miRNAs originate as RNA polymerase III cotranscripts with neighboring repetitive elements. The initial transcript, termed a primary microRNA (pri-miRNA), contains an imperfectly double-stranded region within a hairpin loop. Longer sequences extend from the 5' and 3' ends of the hairpin and may also contain double-stranded regions. 2. Cleavage by DROSHA. The 5' and 3' ends of the pri-miRNA are removed during endoribonucleolytic cleavage by the DROSHA nuclease in a complex with the RNA-binding protein DGCR8 (the Microprocessor complex). The cleavage product is a short hairpin of about 60 to 70 nt called the pre-microRNA (pre-miRNA). 3. Nuclear export by Exportin-5. The resulting pre-miRNA is bound by Exportin-5 in a complex with Ran and GTP. The complex translocates the pre-miRNA through the nuclear pore into the cytoplasm. 4. Cleavage by DICER1. Once in the cytoplasm the pre-miRNA is bound by the RISC loading complex which contains DICER1, an Argonaute protein and either TARBP2 or PRKRA. DICER1 cleaves the pre-miRNA to yield an imperfectly double-stranded miRNA of about 21 to 23 nucleotides. At this stage the double-stranded miRNA has protruding single-stranded 3' ends of 2-3 nt. 5. Incorporation into RNA-Induced Silencing Complex (RISC) and strand selection. The double-stranded miRNA is passed to a Argonaute protein contained in the RISC loading complex. One strand, the passenger strand, will be removed and degraded; the other strand, the guide strand, will be retained and will guide the Argonaute:miRNA complex (RISC) to target mRNAs.The human genome encodes 4 Argonaute proteins (AGO1 (EIF2C1), AGO2 (EIF2C2), AGO3 (EIF2C3), AGO4 (EIF2C4)), however only AGO2 (EIF2C2) can cleave target mRNAs with perfect or nearly perfect complementarity to the guide miRNA. For complexes that contain AGO2, cleavage of the passenger strand of the double-stranded miRNA accompanies removal of the passenger strand. Complexes containing other Argonautes may use a helicase to remove the passenger strand but this is not fully known. The resulting miRNA-loaded AGO2 is predominantly located in complexes with TARBP2 or PRKRA at the cytosolic face of the rough endoplasmic reticulum. AGO2, TARBP2, and DICER1 are also observed in the nucleus
Pluripotent stem cells are undifferentiated cells posessing an abbreviated cell cycle (reviewed in Stein et al. 2012), a characteristic profile of gene expression (Rao et al. 2004, Kim et al. 2006, Player et al. 2006, Wang et al 2006 using mouse, International Stem Cell Initiative 2007, Assou et al. 2007, Assou et al. 2009, Ding et al. 2012 using mouse), and the ability to self-renew and generate all cell types of the body except extraembryonic lineages (Marti et al. 2013, reviewed in Romeo et al. 2012). They are a major cell type in the inner cell mass of the early embryo in vivo, and cells with the same properties, induced pluripotent stem cells, can be generated in vitro from differentiated adult cells by overexpression of a set of transcription factor genes (Takahashi and Yamanaka 2006, Takahashi et al. 2007, Yu et al. 2007, Jaenisch and Young 2008, Stein et al. 2012, reviewed in Dejosez and Zwaka 2012).Pluripotency is maintained by a self-reinforcing loop of transcription factors (Boyer et al. 2005, Rao et al. 2006, Matoba et al. 2006, Player et al. 2006, Babaie et al. 2007, Sun et al. 2008, Assou et al. 2009, reviewed in Kashyap et al. 2009, reviewed in Dejosez and Zwaka 2012). In vivo, initiation of pluripotency may depend on maternal factors transmitted through the oocyte (Assou et al. 2009) and on DNA demethylation in the zygote (recently reviewed in Seisenberger et al. 2013) and hypoxia experienced by the blastocyst in the reproductive tract before implantation (Forristal et al. 2010, reviewed in Mohyeldin et al. 2010). In vitro, induced pluripotency may initiate with demethylation and activation of the promoters of POU5F1 (OCT4) and NANOG (Bhutani et al. 2010). Hypoxia also significantly enhances conversion to pluripotent stem cells (Yoshida et al. 2009). POU5F1 and NANOG, together with SOX2, encode central factors in pluripotency and activate their own transcription (Boyer et al 2005, Babaie et al. 2007, Yu et al. 2007, Takahashi et al. 2007). The autoactivation loop maintains expression of POU5F1, NANOG, and SOX2 at high levels in stem cells and, in turn, complexes containing various combinations of these factors (Remenyi et al. 2003, Lam et al. 2012) activate the expression of a group of genes whose products are associated with rapid cell proliferation and repress the expression of a group of genes whose products are associated with cell differentiation (Boyer et al. 2005, Matoba et al. 2006, Babaie et al. 2007, Chavez et al. 2009, Forristal et al. 2010, Guenther 2011).Comparisons between human and mouse embryonic stem cells must be made with caution and for this reason inferences from mouse have been used sparingly in this module. Human ESCs more closely resemble mouse epiblast stem cells in having inactivated X chromosomes, flattened morphology, and intolerance to passaging as single cells (Hanna et al. 2010). Molecularly, human ESCs differ from mouse ESCs in being maintained by FGF and Activin/Nodal/TGFbeta signaling rather than by LIF and canonical Wnt signaling (Greber et al. 2010, reviewed in Katoh 2011). In human ESCs POU5F1 binds and directly activates the FGF2 gene, however Pou5f1 does not activate Fgf2 in mouse ESCs (reviewed in De Los Angeles et al. 2012). Differences in expression patterns of KLF2, KLF4, KLF5, ESRRB, FOXD3, SOCS3, LIN28, NODAL were observed between human and mouse ESCs (Cai et al. 2010) as were differences in expression of EOMES, ARNT and several other genes (Ginis et al.2004)
Recent evidence indicates that small RNAs participate in transcriptional regulation in addition to post-transcriptional silencing. Components of the RNAi machinery (ARGONAUTE1 (AGO1, EIF2C1), AGO2 (EIF2C2), AGO3 (EIF2C3), AGO4 (EIF2C4), TNRC6A, and DICER) are observed associated with microRNAs (miRNAs) in both the cytosol and the nucleus (Robb et al. 2005, Weinmann et al. 2009, Doyle et al. 2013, Nishi et al. 2013, Gagnon et al. 2014). The AGO:miRNA complexes are imported into the nucleus by IMPORTIN-8 (IPO8, IMP8, RANBP8) and also by an unknown importin while associated with the nuclear shuttling protein TNRC6A (reviewed in Schraivogel and Meister 2014).Within the nucleus, AGO2, TNRC6A, and DICER may associate in a complex (Gagnon et al. 2014). Nuclear AGO1 and AGO2 in complexes with small RNAs are observed to activate transcription (RNA activation, RNAa) or repress transcription (Transcriptional Gene Silencing, TGS) of genes that contain sequences matching the small RNAs (reviewed in Malecova and Morris 2010, Huang and Li 2012, Gagnon and Corey 2012, Huang and Li 2014, Salmanidis et al. 2014, Stroynowska-Czerwinska et al. 2014). TGS is associated with methylation of cytosine in DNA and methylation of histone H3 at lysine-9 and lysine-27 (Castanotto et al. 2005, Suzuki et al. 2005, Kim et al. 2006, Weinberg et al. 2006, Kim et al. 2008, reviewed in Malecova and Morris 2010, Li et al. 2014); RNAa is associated with methylation of histone H3 at lysine-4 (Huang et al. 2012, reviewed in Li et al. 2014). Small RNAs in the nucleus have also been shown to play roles in alternative splicing (Liu et al., 2012, Ameyar-Zazoua et al., 2012) and DNA damage repair (Wei et al., 2012; Francia et al., 2012). Nevertheless, elucidation of the detailed mechanisms of small RNA action requires further research
In germ cells of humans and mice, precursors of PIWI-interacting RNAs (piRNAs) are transcribed from a few hundred sequence clusters, as well as individual transposons, intergenic regions, and genes in the genome. These longer transcripts are processed to yield piRNAs of 26-30 nucleotides independently of DICER, the enzyme responsible for microRNAs (miRNAs) and small interfering RNAs (siRNAs) (reviewed in Girard and Hannon 2008, Siomi et al. 2011, Ishizu et al. 2012, Pillai and Chuma 2012, Bortvin 2013, Chuma and Nakano 2013, Sato and Siomi 2013). The initial step in processing long transcripts to piRNAs is cleavage by PLD6 (MitoPLD), which generates the mature 5' end. The cleavage products of PLD6 are bound by either PIWIL1 (HIWI, MIWI) or PIWIL2 (HILI, MILI) in complexes with several other proteins. The 3' end is trimmed by an unknown exonuclease to generate the mature piRNA. PIWIL1:piRNA complexes appear to be involved in post-transcriptional silencing in the cytosol while PIWIL2:piRNA complexes generate further piRNAs from transposon transcripts and other transcripts in the cytosol. Cleavage products from PIWIL2:piRNA may be loaded into either PIWIL2 or PIWIL4 (HIWI2, MIWI2). Loading into PIWIL2 forms a step in a cytosolic amplification loop called the \ping-pong cycle\which yields further PIWIL2:piRNA complexes from cleaved precursor RNAs. Loading into PIWIL4 yields a complex also containing TDRD9 that translocates to the nucleus and directs DNA methylation of cognate loci, causing transcriptional silencing during spermatogenesis. Transcriptional silencing by piRNAs is necessary to limit transposition of endogenous transposons such as L1 elements in the genome
In mammals, anterior Hox genes may be defined as paralog groups 1 to 4 (Natale et al. 2011), which are involved in development of the hindbrain through sequential expression in the rhombomeres, transient segments of the neural tube that form during development of the hindbrain (reviewed in Alexander et al. 2009, Soshnikova and Duboule 2009, Tumpel et al. 2009, Mallo et al. 2010, Andrey and Duboule 2014). Hox gene activation during mammalian development has been most thoroughly studied in mouse embryos and the results have been extended to human development by in vitro experiments with human embryonal carcinoma cells and human embryonic stem cells.Expression of a typical anterior Hox gene has an anterior boundary located at the junction between two rhombomeres and continues caudally to regulate segmentation and segmental fate in ectoderm, mesoderm, and endoderm. Anterior boundaries of expression of successive Hox paralog groups are generally separated from each other by 2 rhombomeres. For example, HOXB2 is expressed in rhombomere 3 (r3) and caudally while HOXB3 is expressed in r5 and caudally. Exceptions exist, however, as HOXA1, HOXA2, and HOXB1 do not follow the rule and HOXD1 and HOXC4 are not expressed in rhombomeres. Hox genes within a Hox cluster are expressed colinearly: the gene at the 3' end of the cluster is expressed earliest, and hence most anteriorly, then genes 5' are activated sequentially in the same order as they occur in the cluster. Activation of expression occurs epigenetically by loss of polycomb repressive complexes and change of bivalent chromatin to active chromatin through, in part, the actions of trithorax family proteins (reviewed in Soshnikova and Duboule 2009). Hox gene expression initiates in the posterior primitive streak that will contribute to extraembryonic mesoderm. Expression then extends anteriorly into the cells that will become the embryo, where expression is first observed in presumptive lateral plate mesoderm and is transmitted to both paraxial mesoderm and neurectoderm formed by gastrulation along the primitive streak (reviewed in Deschamps et al. 1999, Casaca et al. 2014).Prior to establishment of the rhombomeres, expression of HOXA1 and HOXB1 is initiated near the future site of r3 and caudally by a gradient of retinoic acid (RA). (Mechanisms of retinoic acid signaling are reviewed in Cunningham and Duester 2015.) The RA is generated by the ALDH1A2 (RALDH2) enzyme located in somites flanking the caudal hindbrain and degraded by CYP26 enzymes expressed initially in anterior neural ectoderm of the early gastrula and then throughout most of the hindbrain (reviewed in White and Schilling 2008). HOXA1 with PBX1,2 and MEIS2 directly activate transcription of ALDH1A2 to maintain retinoic acid synthesis in the somitic mesoderm (Vitobello et al. 2011). Differentiation of embryonal carcinoma cells and embryonic stem cells in response to retinoic acid is used to model the process of differentiation in vitro (reviewed in Soprano et al. 2007, Gudas et al. 2013).HOXA1 appears to set the anterior limit of HOXB1 expression (Barrow et al. 2000). HOXB1 initiates expression of EGR2 (KROX20) in presumptive r3. EGR2 then activates HOXA2 expression in r3 and r5 while HOXB1, together with PBX1 and MEIS:PKNOX1 (MEIS:PREP), activates expression of HOXA2 in r4 and caudal rhombomeres. AP-2 transcription factors maintain expression of HOXA2 in neural crest cells (Maconochie et al. 1999). HOXB1 also activates expression of HOXB2 in r3 and caudal rhombomeres. EGR2 negatively regulates HOXB1 so that by the time rhombomeres appear, HOXB1 is restricted to r4 and HOXA1 is no longer detectable (Barrow et al. 2000). EGR2 and MAFB (Kreisler) then activate HOXA3 and HOXB3 in r5 and caudal rhombomeres. Retinoic acid activates HOXA4, HOXB4, and HOXD4 in r7, the final rhombomere. HOX proteins, in turn, activate expression of genes in combination with other factors, notably members of the TALE family of transcription factors (PBX, PREP, and MEIS, reviewed in Schulte and Frank 2014, Rezsohazy et al. 2015). HOX proteins also participate in non-transcriptional interactions (reviewed in Rezsohazy 2014). In zebrafish, Xenopus, and chicken factors such as Meis3, Fgf3, Fgf8, and vHNF regulate anterior hox genes (reviewed in Schulte and Frank 2014), however less is known about the roles of homologous factors in mammals. Mutations in HOXA1 in humans have been observed to cause developmental abnormalities located mostly in the head and neck region (Tischfield et al. 2005, Bosley et al. 2008). A missense mutation in HOXA2 causes microtia, hearing impairment, and partially cleft palate (Alasti et al. 2008). A missense mutation in HOXB1 causes a similar phenotype to the Hoxb1 null mutation in mice: bilateral facial palsy, hearing loss, and strabismus (improper alignment of the eyes) (Webb et al. 2012)
For initiation, Pol II assembles with the general transcription factors TFIIB, TFIID, TFIIE, TFIIF and TFIIH, which are collectively known as the general transcription factors, at promoter DNA to form the pre-initiation complex (PIC). Until the nascent transcript is about 15 nucleotides long, the early transcribing complex is functionally unstable. In the beginning, short RNAs are frequently released and Pol II has to restart transcription (abortive cycling)
Formation of TC-NER pre-incision complex is initiated when the RNA polymerase II (RNA Pol II) complex stalls at a DNA damage site. The stalling is caused by misincorporation of a ribonucleotide opposite to a damaged base (Brueckner et al. 2007). Cockayne syndrome protein B (ERCC6, CSB) binds stalled RNA Pol II and recruits Cockayne syndrome protein A (ERCC8, CSA). ERCC8 is part of an ubiquitin ligase complex that also contains DDB1, CUL4A or CUL4B and RBX1. This complex is implicated in the regulation of TC-NER progression probably by ubiquitinating one or more factors involved in this pathway, which may include RNA Pol II and ERCC6 at the later stages of repair (Bregman et al. 1996, Fousteri et al. 2006, Groisman et al. 2006). XPA is recruited to the TC-NER site through its interaction with the TFIIH complex (Furuta et al. 2002, Ziani et al. 2014). The XAB2 complex, which probably regulates the accessibility of the DNA damage site through its RNA-DNA helicase activity, binds the TC-NER site via the interaction of its XAB2 subunit with RNA Pol II, ERCC6, ERCC8 and XPA (Nakatsu et al. 2000, Sollier et al. 2014). TCEA1 (TFIIS) is a transcription elongation factor that may facilitate backtracking of the stalled RNA Pol II, enabling access of repair proteins to the DNA damage site and promotes partial digestion of the 3' protruding end of the nascent mRNA transcript by the backtracked RNA Pol II, allowing resumption of RNA synthesis after damage removal (Donahue et al. 1994). Access to DNA damage site is also facilitated by chromatin remodelers HMGN1 (recruited to the TC-NER site through RNA Pol II and ERCC8-dependent manner) and histone acetyltransferase p300 (EP300), recruited to the TC-NER site through ERCC6-dependent manner (Birger et al. 2003, Fousteri et al. 2006). UVSSA protein interacts with ubiquitinated ERCC6 and RNA Pol II, recruiting ubiquitin protease USP7 to the TC-NER site and promoting ERCC6 stabilization (Nakazawa et al. 2012, Schwertman et al. 2012, Zhang et al. 2012, Fei and Chen 2012)
DNA damage in transcribed strands of active genes is repaired through a specialized nucleotide excision repair (NER) pathway known as transcription-coupled nucleotide excision repair (TC-NER). TC-NER impairment is the underlying cause of a severe hereditary disorder Cockayne syndrome, an autosomal recessive disease characterized by hypersensitivity to UV light. TC-NER is triggered by helix distorting lesions that block the progression of elongating RNA polymerase II (RNA Pol II). Stalled RNA Pol II complex triggers the recruitment of ERCC6. ERCC6, commonly known as CSB (Cockayne syndrome protein B) recruits ERCC8, commonly known as CSA (Cockayne syndrome protein A). ERCC8 has 7 WD repeat motifs and is part of the ubiquitin ligase complex that also includes DDB1, CUL4A or CUL4B and RBX1. The ERCC8 ubiquitin ligase complex is one of the key regulators of TC-NER that probably exerts its role by ubiquitinating one or more factors involved in this repair process, including the RNA Pol II complex and ERCC6. In addition to RNA Pol II, ERCC6 and the ERCC8 complex, the transcription elongation factor TFIIH, which is also involved in global genome nucleotide excision repair (GG-NER), is recruited to sites of TC-NER. The TC-NER pre-incision complex also includes XPA, XAB2 complex, TCEA1 (TFIIS), HMGN1, UVSSA in complex with USP7, and EP300 (p300). XPA probably contributes to the assembly and stability of the pre-incision complex, similar to its role in GG-NER. The XAB2 complex is involved in pre-mRNA splicing and may modulate the structure of the nascent mRNA hybrid with template DNA through its RNA-DNA helicase activity, allowing proper processing of DNA damage. TCEA1 may be involved in RNA Pol II backtracking, which allows repair proteins to gain access to the damage site. It also facilitates trimming of the 3' end of protruding nascent mRNA from the stalled RNA Pol II, enabling recovery of RNA synthesis after repair.
Deubiquitinating activity of the UVSSA:USP7 complex is needed for ERCC6 stability at repair sites. Non-histone nucleosomal binding protein HMGN1 and histone acetyltransferase p300 (EP300) remodel the chromatin around the damaged site, thus facilitating repair.
Dual incision of the lesion-containing oligonucleotide from the affected DNA strand is performed by two DNA endonucleases, the ERCC1:ERCC4 (ERCC1:XPF) complex and ERCC5 (XPG), which also participate in GG-NER. DNA polymerases delta, epsilon or kappa fill in the single stranded gap after dual incision and the remaining single strand nick is sealed by DNA ligases LIG1 or LIG3 (the latter in complex with XRCC1), similar to GG-NER. After the repair of DNA damage is complete, RNA Pol II resumes RNA synthesis. For past and recent reviews, see Mellon et al. 1987, Svejstrup 2002, Hanawalt and Spivak 2008, Vermeulen and Fousteri 2013 and Marteijn et al. 2014
In transcription-coupled nucleotide excision repair (TC-NER), similar to global genome nucleotide excision repair (GG-NER), the oligonucleotide that contains the lesion is excised from the open bubble structure via dual incision of the affected DNA strand. 5' incision by the ERCC1:ERCC4 (ERCC1:XPF) endonuclease precedes 3' incision by ERCC5 (XPG) endonuclease. In order for the TC-NER pre-incision complex to assemble and the endonucleases to incise the damaged DNA strand, the RNA polymerase II (RNA Pol II) complex has to backtrack - reverse translocate from the damage site. Although the mechanistic details of this process are largely unknown in mammals, it may involve ERCC6/ERCC8-mediated chromatin remodelling/ubiquitination events, the DNA helicase activity of the TFIIH complex and TCEA1 (TFIIS)-stimulated cleavage of the 3' protruding end of nascent mRNA by RNA Pol II (Donahue et al. 1994, Lee et al. 2002, Sarker et al. 2005, Vermeulen and Fousteri 2013, Hanawalt and Spivak 2008, Staresincic et al. 2009, Epshtein et al. 2014)
In transcription-coupled nucleotide excision repair (TC-NER), similar to global genome nucleotide excision repair (GG-NER), DNA polymerases delta or epsilon, or the Y family DNA polymerase kappa, fill in the single stranded gap that remains after dual incision. DNA ligases LIG1 or LIG3, the latter in complex with XRCC1, subsequently seal the single stranded nick by ligating the 3' end of the newly synthesized patch with the 5' end of incised DNA (Moser et al. 2007, Staresincic et al. 2009, Ogi et al. 2010)
Several DNA repair genes contain p53 response elements and their transcription is positively regulated by TP53 (p53). TP53-mediated regulation probably ensures increased protein level of DNA repair genes under genotoxic stress.
TP53 directly stimulates transcription of several genes involved in DNA mismatch repair, including MSH2 (Scherer et al. 2000, Warnick et al. 2001), PMS2 and MLH1 (Chen and Sadowski 2005). TP53 also directly stimulates transcription of DDB2, involved in nucleotide excision repair (Tan and Chu 2002), and FANCC, involved in the Fanconi anemia pathway that repairs DNA interstrand crosslinks (Liebetrau et al. 1997). Other p53 targets that can influence DNA repair functions are RRM2B (Kuo et al. 2012), XPC (Fitch et al. 2003), GADD45A (Amundson et al. 2002), CDKN1A (Cazzalini et al. 2010) and PCNA (Xu and Morris 1999). Interestingly, the responsiveness of some of these DNA repair genes to p53 activation has been shown in human cells but not for orthologous mouse genes (Jegga et al. 2008, Tan and Chu 2002). Contrary to the positive modulation of nucleotide excision repair (NER) and mismatch repair (MMR), p53 can negatively modulate base excision repair (BER), by down-regulating the endonuclease APEX1 (APE1), acting in concert with SP1 (Poletto et al. 2016).
Expression of several DNA repair genes is under indirect TP53 control, through TP53-mediated stimulation of cyclin K (CCNK) expression (Mori et al. 2002). CCNK is the activating cyclin for CDK12 and CDK13 (Blazek et al. 2013). The complex of CCNK and CDK12 binds and phosphorylates the C-terminal domain of the RNA polymerase II subunit POLR2A, which is necessary for efficient transcription of long DNA repair genes, including BRCA1, ATR, FANCD2, FANCI, ATM, MDC1, CHEK1 and RAD51D. Genes whose transcription is regulated by the complex of CCNK and CDK12 are mainly involved in the repair of DNA double strand breaks and/or the Fanconi anemia pathway (Blazek et al. 2011, Cheng et al. 2012, Bosken et al. 2014, Bartkowiak and Greenleaf 2015, Ekumi et al. 2015)
Alternative splicing of the FGFR2 nascent mRNA generates an epithelial specific isoform (FGFR2 IIIb) and a mesenchymal specific isoform (FGFR2 IIIc). The inclusion of exon 8 in FGFR2 IIIb or exon 9 in FGFR2 IIIc alters the C-terminal half of the D3 loop of the receptor and is responsible for the different ligand-binding specificities of the two isoforms (reviewed in Eswarakumar et al, 2005). In recent years, a number of cis- and trans-acting elements have been identified that regulate the alternative splicing event. Exon IIIb repression is mediated by the presence of weak splice sites flanking the exon, an exonic silencing sequence (ESS) within the IIIb exon and both intronic silencing sequences (ISS) upstream and downstream (Carstens et al, 2000; Del Gatto and Breathnach, 1995; Del Gatto et al, 1996; Wagner et al 2005; Wagner and Garcia-Blanco, 2001). Binding of hnRNPA1, PTB1, SR family proteins and other factors to these elements represses the IIIb exon and promotes FGFR2 IIIc expression in mesenchymal cells (Del Gatto-Konczak et al, 1999; Carstens et al, 2000; Wagner et al, 2005; Wagner and Garcia-Blanco, 2001; Wagner and Garcia-Blanco, 2002). In epithelial cells, recruitment of epithelial specific factors shifts the splicing events to favour inclusion of exon 8. ESPN1 and ESPN2 are epithelial-specific factors that bind to an ISE/ISS-3 (intronic splicing enhancer/intronic splicing silencer-3) region within intron 8 to promote FGFR2 IIIb-specific splicing (Warzecha et al, 2009). A complex of RBFOX2, hnRNPH1 and hnRNPF also contribute to epithelial-specific splicing by competing for binding to a site that is occupied by the SR proteins ASF/SF2 in mesenchymal cells (Baraniak et al, 2006; Mauger et al, 2008). Other proteins and sequences have also been identified that appear to contribute to the regulated expression of FGFR2b and FGFR2c, but the full details of the alternative splicing event remain to be worked out (Muh et al, 2002; Newman et al, 2006; Del Gatto et al, 2000; Hovhannisyan and Carstens, 2007)
Small nuclear RNAs (snRNAs) play key roles in splicing and some of them, specifically the U1 and U2 snRNAs, are encoded by multicopy snRNA gene clusters containing tandem arrays of genes, about 30 in the RNU1 cluster (Bernstein et al. 1985) and about 10-20 in the RNU2 cluster (Van Ardsell and Weiner 1984). Whereas U6 snRNA genes are transcribed by RNA polymerase III, U1,U2, U4, U4atac, U5, U11, and U12 genes are transcribed by RNA polymerase II. Transcription of the U1 and U2 genes has been most extensively studied and the other snRNA genes as well as other genes with similar promoter structures, for example the SNORD13 gene, are inferred to be transcribed by similar reactions. The snRNA genes transcribed by RNA polymerase II are distinguished from mRNA-encoding genes by the presence of a proximal sequence element (PSE) rather than a TATA box and the presence of the Integrator complex rather than the Mediator complex (reviewed in Egloff et al. 2008, Jawdeker and Henry 2008).The snRNA genes are among the most rapidly transcribed genes in the genome. The 5' transcribed region of the U2 snRNA gene is largely single-stranded during interphase and metaphase (Pavelitz et al. 2008) and chromatin within the transcribed region is cleared of nucleosomes (O'Reilly et al. 2014). Transcriptional activation of the RNA polymerase II transcribed snRNA genes begins with binding of transcription factors to the distal sequence element (DSE) of the promoter (reviewed in Hernandez 2001, Egloff et al. 2008, Jawdeker and Henry 2008). The factors, which include POU2F1 (Oct-1), POU2F2 (Oct-2), ZNF143 (Staf) and Sp1, promote binding of the SNAPc complex (also known as PTF and PBP) to the PSE. SNAPc helps clear the gene of nucleosomes (O'Reilly et al. 2014) and recruits initiation factors (TFIIA, TFIIB, TFIIE, TFIIF, and snTAFc:TBP) which recruit RNA polymerase II. Phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (reviewed in Egloff and Murphy 2008) by CDK7 recruits RPAP2 and the Integrator complex, which is required for later processing of the 3' end of the pre-snRNA transcript (reviewed in Chen and Wagner 2010, Baillat and Wagner 2015). The Little Elongation Complex (LEC) also appears to bind around the time of transcription initiation (Hu et al. 2013). As transcription proceeds, RPAP2 dephosphorylates serine-5 and P-TEFb phosphorylates serine-2 of the CTD. As transcription reaches the end of the snRNA gene serine-7 of the CTD is phosphorylated. These marks serve to bind protein complexes and are required for 3' processing of the pre-snRNA (reviewed in Egloff and Murphy 2008). After transcription proceeds through the conserved 3' processing sequence of the pre-snRNA the Integrator complex cleaves the pre-snRNA. Transcription then terminates downstream in a less well characterized reaction that requires elements of the polyadenylation system
The 5'-ends of all eukaryotic pre-mRNAs studied thus far are converted to cap structures. The cap is thought to influence splicing of the first intron, and is bound by 'cap-binding' proteins, CBP80 and CBP20, in the nucleus. The cap is important for translation initiation, and it also interacts with the poly(A)terminus, via proteins, resulting in circularization of the mRNA to facilitate multiple rounds of translation. The cap is also important for mRNA stability, protecting it from 5' to 3' nucleases, and is required for mRNA export to the cytoplasm. The capping reaction usually occurs very rapidly on nascent transcripts; after the synthesis of only a few nucleotides by RNA polymerase II. The capping reaction involves the conversion of the 5'-end of the nascent transcript from a triphosphate to a diphosphate by a RNA 5'-triphosphatase, followed by the addition of a guanosine monophosphate by the mRNA guanylyltransferase, to form a 5'-5'-triphosphate linkage. This cap is then methylated by 2'-O-methyltransferases
The splicing of pre-mRNA occurs within a large, very dynamic complex, designated the 'spliceosome'. The 50-60S spliceosomes are estimated to be 40-60 nm in diameter, and have molecular weights in the range of 3-5 million kDa. Small nuclear RNAs (snRNAs) U1, U2, U4, U5, and U6, are some of the best characterized components of spliceosomes, and are known to play key roles not only in spliceosomal assembly, but also in the two catalytic steps of the splicing reaction. Over 150 proteins have been detected in spliceosomes, and only a subset of these has been characterized. The characterization, and the determination of the functions of the protein components of the spliceosome, is still work in progress.
During spliceosome assembly, the snRNAs and the spliceosomal proteins assemble on the pre-mRNA in a stepwise pathway. First the E complex forms, followed by complexes A and B; the C complex forms next and contains the products of the first step of the splicing reaction. Complexes called i and D form as a consequence of the second step of the splicing reaction, which contain the excised intron and the spliced exons, respectively
The splicing of a subset of pre-mRNA introns occurs by a second pathway, designated the AT-AC or U12-dependent splicing pathway. AT-AC introns have highly conserved, non-canonical splice sites that are removed by the AT-AC spliceosome, which contains distinct snRNAs (U11, U12, U4atac, U6atac) that are structurally and functionally analogous to the major spliceosome. U5 snRNA as well as many of the protein factors appear to be conserved between the two spliceosomes
Co-transcriptional pre-mRNA splicing is not obligatory. Pre-mRNA splicing begins co-transcriptionally and often continues post-transcriptionally. Human genes contain an average of nine introns per gene, which cannot serve as splicing substrates until both 5' and 3' ends of each intron are synthesized. Thus the time that it takes for pol II to synthesize each intron defines a minimal time and distance along the gene in which splicing factors can be recruited. The time that it takes for pol II to reach the end of the gene defines the maximal time in which splicing could occur co-transcriptionally. Thus, the kinetics of transcription can affect the kinetics of splicing.Any covalent change in a primary (nascent) mRNA transcript is mRNA Processing. For successful gene expression, the primary mRNA transcript needs to be converted to a mature mRNA prior to its translation into polypeptide. Eucaryotic mRNAs undergo a series of complex processing reactions; these begin on nascent transcripts as soon as a few ribonucleotides have been synthesized during transcription by RNA Polymerase II, through the export of the mature mRNA to the cytoplasm, and culminate with mRNA turnover in the cytoplasm
Formation of the pre-initiation complex proceeds in five steps, recognition and binding of core promoter elements by TFIID, binding of TFIIA and TFIIB to the pol II promoter:TFIID complex, recruitment of RNA Polymerase II Holoenzyme by TFIIF to the pol II promoter:TFIID:TFIIA:TFIIB complex, binding of TFIIE to the growing preinitiation complex, and formation of the closed pre-initiation complex (Orphanides et al. 1997)
Formation of the open complex exposes the template strand to the catalytic center of the RNA polymerase II enzyme. This facilitates formation of the first phosphodiester bond, which marks transcription initiation. As a result of this, the TFIIB basal transcription factor dissociates from the initiation complex.
The open transcription initiation complex is unstable and can revert to the closed state. Initiation at this stage requires continued (d)ATP-hydrolysis by TFIIH. Dinucleotide transcripts are not stably associated with the transcription complex. Upon dissociation they form abortive products. The transcription complex is also sensitive to inhibition by small oligo-nucleotides.
Dinucleotides complementary to position -1 and +1 in the template can also direct first phosphodiester bond formation. This reaction is independent on the basal transcription factors TFIIE and TFIIH and does not involve open complex formation. This reaction is sensitive to inhibition by single-stranded oligonucleotides
The mechanisms governing the process of elongation during eukaryotic mRNA synthesis are being unraveled by recent studies. These studies have led to the expected discovery of a diverse collection of transcription factors that directly regulate the activities of RNA Polymerase II and unexpected discovery of roles for many elongation factors in other basic processes like DNA repair, recombination, etc. The transcription machinery and structural features of the major RNA polymerases are conserved across species. The genes active during elongation fall under different classes like, housekeeping, cell-cycle regulated, development and differentiation specific genes etc. The list of genes involved in elongation has been growing in recent times, and include: -TFIIS,DSIF, NELF, P-Tefb etc. that are involved in drug induced or sequence-dependent arrest - TFIIF, ELL, elongin, elongator etc. that are involved in increasing the catalytic rate of elongation by altering the Km and/or the Vmax of Pol II -FACT, Paf1 and other factors that are involved chromatin modification - DNA repair proteins, RNA processing and export factors, the 19S proteasome and a host of other factors like Spt5-Spt5, Paf1, and NELF complexes, FCP1P etc. (Arndt and Kane, 2003). Elongation also represents processive phase of transcription in which the activities of several mRNA processing factors are coupled to transcription through their binding to RNA polymerase (Pol II). One of the key events that enables this interaction is the differential phosphorylation of Pol II CTD. Phosphorylation pattern of CTD changes during transcription, most significantly at the beginning and during elongation process. TFIIH-dependent Ser5 phosphorylation is observed primarily at promoter regions while P-Tefb mediated Ser2 phosphorylation is seen mainly in the coding regions, during elongation. Experimental evidence suggests a dynamic association of RNA processing factors with differently modified forms of the polymerase during the transcription cycle. (Komarnitsky et al., 2000)
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. Many changes must occur to the RNA polymerase II (pol II) transcription complex as it makes the transition from initiation into transcript elongation. During this intermediate phase of transcription, contact with initiation factors is lost and stable association with the nascent transcript is established. These changes collectively comprise promoter clearance
To facilitate co-transcriptional capping, and thereby restrict the cap structure to RNAs made by RNA polymerase II, the capping enzymes bind directly to the RNA polymerase II. The C-terminal domain of the largest Pol II subunit contains several phosphorylation sites on its heptapeptide repeats. The capping enzyme guanylyltransferase and the methyltransferase bind specifically to CTD phosphorylated at Serine 5 within the CTD. Kinase subunit of TFIIH, Cdk7, catalyzes this phosphorylation event that occurs near the promoter. In addition, it has been shown that binding of capping enzyme to the Serine-5 phosphorylated CTD stimulates guanylyltransferase activity in vitro
A soluble truncated form of FGFR2 is aberrantly expressed in an Apert Syndrome mouse model and inhibits FGFR signaling in vitro and in vivo. This variant, termed FGFR IIIa TM, arises from an misspliced transcript that fuses exon 7 to exon 10 and that escapes nonsense-mediated decay. FGFR2 IIIa TM may inhibit signaling by sequestering FGF ligand and/or by forming nonfunctional heterodimers with full-length receptors at the cell surface (Wheldon et al, 2011)
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, far western blotting, mammalian protein protein interaction trap
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, far western blotting, mammalian protein protein interaction trap
Affinity Capture-MS, Affinity Capture-Western, Co-fractionation, Reconstituted Complex, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, far western blotting, mammalian protein protein interaction trap