241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during theirdevelopment Involved in FCGR3 (low affinity immunoglobulin gammaFc region receptor III)-mediated signaling in natural killer cellsand FCER1 (high affinity immunoglobulin epsilon receptor)-mediatedsignaling in mast cells Couples activation of these receptors andtheir associated kinases with distal intracellular events such asmobilization of intracellular calcium stores, PKC activation, MAPKactivation or cytoskeletal reorganization through the recruitmentof PLCG1, GRB2, GRAP2, and other signaling molecules
The Ras proteins are GTPases that function as molecular switches for signaling pathways regulating cell proliferation, survival, growth, migration, differentiation or cytoskeletal dynamism. Ras proteins transduce signals from extracellular growth factors by cycling between inactive GDP-bound and active GTP-bound states. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Activated RAS (RAS-GTP) regulates multiple cellular functions through effectors including Raf, phosphatidylinositol 3-kinase (PI3K) and Ral guanine nucleotide-dissociation stimulator (RALGDS).
Rap1 is a small GTPase that controls diverse processes, such as cell adhesion, cell-cell junction formation and cell polarity. Like all G proteins, Rap1 cycles between an inactive GDP-bound and an active GTP-bound conformation. A variety of extracellular signals control this cycle through the regulation of several unique guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types.
Nuclear factor-kappa B (NF-kappa B) is the generic name of a family of transcription factors that function as dimers and regulate genes involved in immunity, inflammation and cell survival. There are several pathways leading to NF-kappa B-activation. The canonical pathway is induced by tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or byproducts of bacterial and viral infections. This pathway relies on IKK- mediated IkappaB-alpha phosphorylation on Ser32 and 36, leading to its degradation, which allows the p50/p65 NF-kappa B dimer to enter the nucleus and activate gene transcription. Atypical pathways are IKK-independent and rely on phosphorylation of IkappaB-alpha on Tyr42 or on Ser residues in IkappaB-alpha PEST domain. The non-canonical pathway is triggered by particular members of the TNFR superfamily, such as lymphotoxin-beta (LT-beta) or BAFF. It involves NIK and IKK-alpha-mediated p100 phosphorylation and processing to p52, resulting in nuclear translocation of p52/RelB heterodimers.
Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in early defenses against both allogeneic (nonself) cells and autologous cells undergoing various forms of stress, such as infection with viruses, bacteria, or parasites or malignant transformation. Although NK cells do not express classical antigen receptors of the immunoglobulin gene family, such as the antibodies produced by B cells or the T cell receptor expressed by T cells, they are equipped with various receptors whose engagement allows them to discriminate between target and nontarget cells. Activating receptors bind ligands on the target cell surface and trigger NK cell activation and target cell lysis. However Inhibitory receptors recognize MHC class I molecules (HLA) and inhibit killing by NK cells by overruling the actions of the activating receptors. This inhibitory signal is lost when the target cells do not express MHC class I and perhaps also in cells infected with virus, which might inhibit MHC class I exprssion or alter its conformation. The mechanism of NK cell killing is the same as that used by the cytotoxic T cells generated in an adaptive immune response; cytotoxic granules are released onto the surface of the bound target cell, and the effector proteins they contain penetrate the cell membrane and induce programmed cell death.
Immunity to different classes of microorganisms is orchestrated by separate lineages of effector T helper (TH)-cells, which differentiate from naive CD4+ precursor cells in response to cues provided by antigen presenting cells (APC) and include T helper type 1 (Th1) and Th2. Th1 cells are characterized by the transcription factor T-bet and signal transducer and activator of transcription (STAT) 4, and the production of IFN-gamma. These cells stimulate strong cell-mediated immune responses, particularly against intracellular pathogens. On the other hand, transcription factors like GATA-3 and STAT6 drive the generation of Th2 cells that produce IL-4, IL-5 and IL-13 and are necessary for inducing the humoral response to combat parasitic helminths (type 2 immunity) and isotype switching to IgG1 and IgE. The balance between Th1/Th2 subsets determines the susceptibility to disease states, where the improper development of Th2 cells can lead to allergy, while an overactive Th1 response can lead to autoimmunity.
Interleukin (IL)-17-producing helper T (Th17) cells serve as a subset of CD4+ T cells involved in epithelial cell- and neutrophil mediated immune responses against extracellular microbes and in the pathogenesis of autoimmune diseases. In vivo, Th17 differentiation requires antigen presentation and co-stimulation, and activation of antigen presenting-cells (APCs) to produce TGF-beta, IL-6, IL-1, IL-23 and IL-21. This initial activation results in the activation and up-regulation of STAT3, ROR(gamma)t and other transcriptional factors in CD4+ T cells, which bind to the promoter regions of the IL-17, IL-21 and IL-22 genes and induce IL-17, IL-21 and IL-22. In contrast, the differentiation of Th17 cells and their IL-17 expression are negatively regulated by IL-2, Th2 cytokine IL-4, IL-27 and Th1 cytokine IFN-gamma through STAT5, STAT6 and STAT1 activation, respectively. Retinoid acid and the combination of IL-2 and TGF-beta upregulate Foxp3, which also downregulates cytokines like IL-17 and IL-21. The inhibition of Th17 differentiation may serve as a protective strategy to 'fine-tune' the expression IL-17 so it does not cause excessive inflammation. Thus, balanced differentiation of Th cells is crucial for immunity and host protection.
Activation of T lymphocytes is a key event for an efficient response of the immune system. It requires the involvement of the T-cell receptor (TCR) as well as costimulatory molecules such as CD28. Engagement of these receptors through the interaction with a foreign antigen associated with major histocompatibility complex molecules and CD28 counter-receptors B7.1/B7.2, respectively, results in a series of signaling cascades. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions, leading to T-cell proliferation, cytokine production and differentiation into effector cells.
Fc epsilon RI-mediated signaling pathways in mast cells are initiated by the interaction of antigen (Ag) with IgE bound to the extracellular domain of the alpha chain of Fc epsilon RI. The activation pathways are regulated both positively and negatively by the interactions of numerous signaling molecules. Mast cells that are thus activated release preformed granules which contain biogenic amines (especially histamines) and proteoglycans (especially heparin). The activation of phospholipase A2 causes the release of membrane lipids followed by development of lipid mediators such as leukotrienes (LTC4, LTD4 and LTE4) and prostaglandins (especially PDG2). There is also secretion of cytokines, the most important of which are TNF-alpha, IL-4 and IL-5. These mediators and cytokines contribute to inflammatory responses.
Phagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes.
The GPVI receptor is a complex of the GPVI protein with Fc epsilon R1 gamma (FcR). The Src family kinases Fyn and Lyn constitutively associate with the GPVI-FcR complex in platelets and initiate platelet activation through phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in the FcR gamma chain, leading to binding and activation of the tyrosine kinase Syk. Downstream of Syk, a series of adapter molecules and effectors lead to platelet activation. The GPVI receptor signaling cascade is similar to that of T- and B-cell immune receptors, involving the formation of a signalosome composed of adapter and effector proteins. At the core of the T-cell receptor signalosome is the transmembrane adapter LAT and two cytosolic adapters SLP-76 and Gads. While LAT is essential for signalling to PLCgamma1 downstream of the T-cell receptor, the absence of LAT in platelets only impairs the activation of PLCgamma2, the response to collagen and GPVI receptor ligands remains sufficient to elicit a full aggregation response. In contrast, GPVI signalling is almost entirely abolished in the absence of SLP-76
In addition to serving as a scaffold via auto-phosphorylation, ZAP-70 also phosphorylates a restricted set of substrates following TCR stimulation - including LAT and SLP-76. These substrates have been recognized to play pivotal role in TCR signaling by releasing second messengers. When phosphorylated, LAT and SLP-76 act as adaptor proteins which serve as nucleation points for the construction of a higher order signalosome: GADS, PLC-gamma1 and GRB2 bind to the LAT on the phosphorylated tyrosine residues (steps 8 and 13). SLP-76 and SOS are then moved to the signalosome by interacting with the SH3 domains of GRB2 and GADS via their proline rich sequences (step 9). Three SLP-76 acidic domain N-term tyrosine residues are phosphorylated by ZAP-70, once SLP-76 binds to GADS (step 10). These phospho-tyrosine residues act as binding sites to the SH2 domains of PLC-gamma1, Vav and Itk (steps 11 and 12).
PLC-gamma1 is activated by dual phosphorylation on the tyrosine residues at positions 771, 783 and 1254 by Itk and ZAP-70 (step 14). Phosphorylated PLC-gamma1 subsequently detaches from LAT and SLP-76 and translocates to the plasma membrane by binding to phosphatidylinositol-4,5-bisphosphate (PIP2) via its PH domain (step 15). PLC-gamma1 goes on to hydrolyse PIP2 to second messengers DAG and IP3. These second messengers are involved in PKC and NF-kB activation and calcium mobilization (step 16)
In response to receptor ligation, the tyrosine residues in DAP12's immunoreceptor tyrosine-based activation motif (ITAM) are phosphorylated by Src family kinases. These phosphotyrosines form the docking site for the protein tyrosine kinase SYK in myeloid cells and SYK and ZAP70 in NK cells. DAP12-bound SYK autophosphorylates and phosphorylates the scaffolding molecule LAT, recruiting the proximal signaling molecules phosphatidylinositol-3-OH kinase (PI3K), phospholipase-C gamma (PLC-gamma), GADS (GRB2-related adapter downstream of SHC), SLP76 (SH2 domain-containing leukocyte protein of 76 kDa), GRB2:SOS (Growth factor receptor-bound protein 2:Son of sevenless homolog 1) and VAV. All of these intermediate signalling molecules result in the recruitment and activation of kinases AKT, CBL (Casitas B-lineage lymphoma) and ERK (extracellular signal-regulated kinase), and rearrangement of the actin cytoskeleton (actin polymerization) finally leading to cellular activation. PLC-gamma generates the secondary messengers diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (InsP3), leading to activation of protein kinase C (PKC) and calcium mobilization, respectively (Turnbull & Colonna 2007, Klesney-Tait et al. 2006)
Mast cells (MC) are distributed in tissues throughout the human body and have long been recognized as key cells of type I hypersensitivity reactions. They also play important roles in inflammatory and immediate allergic reactions. Activation through FCERI-bound antigen-specific IgE causes release of potent inflammatory mediators, such as histamine, proteases, chemotactic factors, cytokines and metabolites of arachidonic acid that act on the vasculature, smooth muscle, connective tissue, mucous glands and inflammatory cells (Borish & Joseph 1992, Amin 2012, Metcalfe et al. 1993). FCERI is a multimeric cell-surface receptor that binds the Fc fragment of IgE with high affinity. On mast cells and basophils FCERI exists as a tetrameric complex consisting of one alpha-chain, one beta-chain, and two disulfide-bonded gamma-chains, and on dendritic cells, Langerhans cells, macrophages, and eosinophils it exists as a trimeric complex with one alpha-chain and two disulfide-bonded gamma-chains (Wu 2011, Kraft & Kinet 2007). FCERI signaling in mast cells includes a network of signaling molecules and adaptor proteins. These molecules coordinate ultimately leading to effects on degranulation, eicosanoid production, and cytokine and chemokine production and cell migration and adhesion, growth and survival.The first step in FCERI signaling is the phosphorylation of the tyrosine residues in the ITAM of both the beta and the gamma subunits of the FCERI by LYN, which is bound to the FCERI beta-chain. The phosphorylated ITAM then recruits the protein tyrosine kinase SYK (spleen tyrosine kinase) which then phosphorylates the adaptor protein LAT. Phosphorylated LAT (linker for activation of T cells) acts as a scaffolding protein and recruits other cytosolic adaptor molecules GRB2 (growth-factor-receptor-bound protein 2), GADS (GRB2-related adaptor protein), SHC (SRC homology 2 (SH2)-domain-containing transforming protein C) and SLP76 (SH2-domain-containing leukocyte protein of 76 kDa), as well as the exchange factors and adaptor molecules VAV and SOS (son of sevenless homologue), and the signalling enzyme phospholipase C gamma1 (PLC-gamma1). Tyrosoine phosphorylation of enzymes and adaptors, including VAV, SHC GRB2 and SOS stimulate small GTPases such as RAC, RAS and RAF. These pathways lead to activation of the ERK, JNK and p38 MAP kinases, histamine release and cytokine production. FCERI activation also triggers the phosphorylation of PLC-gamma which upon membrane localisation hydrolyse PIP2 to form IP3 and 1,2-diacylglycerol (DAG) - second messengers that release Ca2+ from internal stores and activate PKC, respectively. Degranulation or histamine release follows the activation of PLC-gamma and protein kinase C (PKC) and the increased mobilization of calcium (Ca2+). Receptor aggregation also results in the phosphorylation of adaptor protein NTAL/LAT2 which then recruits GAB2. PI3K associates with phosphorylated GAB2 and catalyses the formation of PIP3 in the membrane, which attracts many PH domain proteins like BTK, PLC-gamma, AKT and PDK. PI3K mediated activation of AKT then regulate the mast cell proliferation, development and survival (Gu et al. 2001)
Formation of the LAT signaling complex leads to activation of MAPK and production of cytokines. The sequence of events that leads from LAT to cytokine production has not been as clearly defined as the sequence that leads to degranulation. However, the pathways that lead to cytokine production require the guanine-nucleotide-exchange factors SOS and VAV that regulate GDP-GTP exchange of RAS. After its activation, RAS positively regulates the RAF-dependent pathway that leads to phosphorylation and, in part, activation of the mitogen-activated protein kinases (MAPKs) extracellular-signal-regulated kinase 1 (ERK1) and ERK2 (Gilfillan & Tkaczyk 2006)
Increase of intracellular calcium in mast cells is most crucial for mast cell degranulation. Elevation of intracellular calcium is achieved by activation of PLC-gamma. Mast cells express both PLC-gamma1 and PLC-gamma2 isoforms and activation of these enzymes leads to conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol triphosphate (IP3) and diacylglycerol (DAG). The production of IP3 leads to mobilization of intracellular Ca+2, which later results in a sustained Ca+2 flux response that is maintained by an influx of extracellular Ca+2. In addition to degranulation, an increase in intracellular calcium concentration also activates the Ca2+/calmodulin-dependent serine phosphatase calcineurin. Calcineurin dephosphorylates the nuclear factor for T cell activation (NFAT) which exposes nuclear-localization signal sequence triggering translocation of the dephosphorylated NFAT-CaN complex to the nucleus. Once in the nucleus, NFAT regulates the transcription of several cytokine genes (Kambayashi et al. 2007, Hoth & Penner 1992, Ebinu et al. 2000, Siraganian et al)
The RAS-RAF-MEK-ERK pathway regulates processes such as proliferation, differentiation, survival, senescence and cell motility in response to growth factors, hormones and cytokines, among others. Binding of these stimuli to receptors in the plasma membrane promotes the GEF-mediated activation of RAS at the plasma membrane and initiates the three-tiered kinase cascade of the conventional MAPK cascades. GTP-bound RAS recruits RAF (the MAPK kinase kinase), and promotes its dimerization and activation (reviewed in Cseh et al, 2014; Roskoski, 2010; McKay and Morrison, 2007; Wellbrock et al, 2004). Activated RAF phosphorylates the MAPK kinase proteins MEK1 and MEK2 (also known as MAP2K1 and MAP2K2), which in turn phophorylate the proline-directed kinases ERK1 and 2 (also known as MAPK3 and MAPK1) (reviewed in Roskoski, 2012a, b; Kryiakis and Avruch, 2012). Activated ERK proteins may undergo dimerization and have identified targets in both the nucleus and the cytosol; consistent with this, a proportion of activated ERK protein relocalizes to the nucleus in response to stimuli (reviewed in Roskoski 2012b; Turjanski et al, 2007; Plotnikov et al, 2010; Cargnello et al, 2011). Although initially seen as a linear cascade originating at the plasma membrane and culminating in the nucleus, the RAS/RAF MAPK cascade is now also known to be activated from various intracellular location. Temporal and spatial specificity of the cascade is achieved in part through the interaction of pathway components with numerous scaffolding proteins (reviewed in McKay and Morrison, 2007; Brown and Sacks, 2009). The importance of the RAS/RAF MAPK cascade is highlighted by the fact that components of this pathway are mutated with high frequency in a large number of human cancers. Activating mutations in RAS are found in approximately one third of human cancers, while ~8% of tumors express an activated form of BRAF (Roberts and Der, 2007; Davies et al, 2002; Cantwell-Dorris et al, 2011)