241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Nucleus Cytoplasm Cell membrane Note=Predominantly nuclear(PubMed:15383005) But also present in the cytoplasm(PubMed:15383005) Translocates from the cytoplasm to the plasmamembrane in a RAC1-dependent manner (PubMed:19948726)
Function (UniProt annotation)
Serine/threonine-protein phosphatase thatdephosphorylates a myriad of proteins involved in differentsignaling pathways including the kinases CSNK1E, ASK1/MAP3K5,PRKDC and RAF1, the nuclear receptors NR3C1, PPARG, ESR1 and ESR2,SMAD proteins and TAU/MAPT Implicated in wide ranging cellularprocesses, including apoptosis, differentiation, DNA damageresponse, cell survival, regulation of ion channels or circadianrhythms, in response to steroid and thyroid hormones, calcium,fatty acids, TGF-beta as well as oxidative and genotoxic stressesParticipates in the control of DNA damage response mechanisms suchas checkpoint activation and DNA damage repair through, forinstance, the regulation ATM/ATR-signaling and dephosphorylationof PRKDC and TP53BP1 Inhibits ASK1/MAP3K5-mediated apoptosisinduced by oxidative stress Plays a positive role inadipogenesis, mainly through the dephosphorylation and activationof PPARG transactivation function Also dephosphorylates andinhibits the anti-adipogenic effect of NR3C1 Regulates thecircadian rhythms, through the dephosphorylation and activation ofCSNK1E May modulate TGF-beta signaling pathway by the regulationof SMAD3 phosphorylation and protein expression levelsDephosphorylates and may play a role in the regulation ofTAU/MAPT Through their dephosphorylation, may play a role in theregulation of ions channels such as KCNH2
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli.
The duration and extent of activated MAPK signaling is regulated at many levels through mechanisms that include phosphorylation and dephosphorylation, changes to protein interacting partners and subcellular localization (reviewed in Matallanas et al, 2011). Activated RAF proteins are subject to MAPK-dependent phosphorylation that promotes the subsequent dephosphorylation of the activation loop and NtA region, terminating RAF kinase activity. This dephosphorylation, catalyzed by PP2A and PP5, primes the RAF proteins for PKA or AKT-mediated phosphorylation of residues S259 and S621, restoring the 14-3-3 binding sites and returning the RAF proteins to the inactive state (von Kriegsheim et al, 2006; Dougherty et al, 2005; reviewed in Matallanas et al, 2011). The phosphorylated RAF1 NtA is also subject to additional regulation through binding to the PEBP1 protein, which promotes its dissociation from MAP2K substrates (Shin et al, 2009). Activated MAPK proteins also phosphorylate T292 of MAP2K1; this phosphorylation limits the activity of MAP2K1, and indirectly affects MAP2K2 activity through by modulating the activity of the MAP2K heterodimer (Catalanotti et al, 2009; reviewed in Matallanas et al, 2011).Dephosphorylation of MAPKs by the dual specificity MAPK phosphatases (DUSPs) plays a key role in limiting the extent of pathway activation (Owens et al, 2007; reviewed in Roskoski, 2012b). Class I DUSPs are localized in the nucleus and are induced by activation of the MAPK pathway, establishing a negative feedback loop, while class II DUSPs dephosphorylate cytoplasmic MAPKs (reviewed in Rososki, 2012b).MAPK signaling is also regulated by the RAS GAP-mediated stimulation of intrinsic RAS GTPase activity which returns RAS to the inactive, GDP bound state (reviewed in King et al, 2013)
Activated ATM phosphorylates a number of proteins involved in the DNA damage checkpoint and DNA repair (Thompson and Schild 2002, Ciccia and Elledge 2010), thereby triggering and coordinating accumulation of DNA DSB repair proteins in nuclear foci known as ionizing radiation-induced foci (IRIF). While IRIFs include chromatin regions kilobases away from the actual DSB site, this Reactome pathway represents simplified foci and events that happen proximal to the DNA DSB ends. In general, proteins localizing to the nuclear foci in response to ATM signaling are cooperatively retained at the DNA DSB site, forming a positive feedback loop and amplifying DNA damage response (Soutoglou and Misteli 2008).
Activated ATM phosphorylates the NBN (NBS1) subunit of the MRN complex (MRE11A:RAD50:NBN) (Gatei et al. 2000), as well as the nucleosome histone H2AFX (H2AX) on serine residue S139, producing gamma-H2AFX (gamma-H2AX) containing nucleosomes (Rogakou et al. 1998, Burma et al. 2001). H2AFX is phosphorylated on tyrosine 142 (Y142) under basal conditions (Xiao et al. 2009). After ATM-mediated phosphorylation of H2AFX on S139, tyrosine Y142 has to be dephosphorylated by EYA family phosphatases in order for the DNA repair to proceed and to avoid apoptosis induced by DNA DSBs (Cook et al. 2009). Gamma-H2AFX recruits MDC1 to DNA DSBs (Stucki et al. 2005). After ATM phosphorylates MDC1 (Liu et al. 2012), the MRN complex, gamma-H2AFX nucleosomes, and MDC1 serve as a core of the nuclear focus and a platform for the recruitment of other proteins involved in DNA damage signaling and repair (Lukas et al. 2004, Soutoglou and Misteli 2008).
RNF8 ubiquitin ligase binds phosphorylated MDC1 (Kolas et al. 2007) and, in cooperation with HERC2 and RNF168 (Bekker-Jensen et al. 2010, Campbell et al. 2012), ubiquitinates H2AFX (Mailand et al. 2007, Huen et al. 2007, Stewart et al. 2009, Doil et al. 2009) and histone demethylases KDM4A and KDM4B (Mallette et al. 2012).
Ubiquitinated gamma-H2AFX recruits UIMC1 (RAP80), promoting the assembly of the BRCA1-A complex at DNA DSBs. The BRCA1-A complex consists of RAP80, FAM175A (Abraxas), BRCA1:BARD1 heterodimer, BRCC3 (BRCC36), BRE (BRCC45) and BABAM1 (MERIT40, NBA1) (Wang et al. 2007, Wang and Elledge 2007)
Ubiquitin mediated degradation of KDM4A and KDM4B allows TP53BP1 (53BP1) to associate with histone H4 dimethylated on lysine K21 (H4K20Me2 mark) by WHSC1 at DNA DSB sites (Pei et al. 2011).
Once recruited to DNA DSBs, both BRCA1:BARD1 heterodimers and TP53BP1 are phosphorylated by ATM (Cortez et al. 1999, Gatei et al. 2000, Kim et al. 2006, Jowsey et al. 2007), which triggers recruitment and activation of CHEK2 (Chk2, Cds1) (Wang et al. 2002, Wilson and Stern 2008, Melchionna et al. 2000).
Depending on the cell cycle stage, BRCA1 and TP53BP1 competitively promote either homology directed repair (HDR) or nonhomologous end joining (NHEJ) of DNA DSBs. HDR through homologous recombination repair (HRR) or single strand annealing (SSA) is promoted by BRCA1 in association with RBBP8 (CtIP), while NHEJ is promoted by TP53BP1 in association with RIF1 (Escribano-Diaz et al. 2013)
Estrogens are a class of hormones that play a role in physiological processes such as development, reproduction, metabolism of liver, fat and bone, and neuronal and cardiovascular function (reviewed in Arnal et al, 2017; Haldosen et al, 2014). Estrogens bind estrogen receptors, members of the nuclear receptor superfamily. Ligand-bound estrogen receptors act as nuclear transcription factors to regulate expression of genes that control cellular proliferation and differentiation, among other processes (reviewed in Hah et al, 2014)
Affinity Capture-Luminescence, Affinity Capture-MS, anti tag coimmunoprecipitation, nuclear magnetic resonance, proximity-dependent biotin identification, pull down
Affinity Capture-Luminescence, Affinity Capture-MS, anti tag coimmunoprecipitation, nuclear magnetic resonance, proximity-dependent biotin identification, pull down
Affinity Capture-Luminescence, Affinity Capture-MS, anti tag coimmunoprecipitation, nuclear magnetic resonance, proximity-dependent biotin identification, pull down