241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cell membrane Cell junction,tight junction Cell junction Cell junction, gap junction Cellprojection, podosome Note=Movesfrom the cytoplasm to the cell membrane concurrently with cell-cell contact (PubMed:7798316) At podosomal sites, ispredominantly localized in the ring structure surrounding theactin core (PubMed:20930113)
Function (UniProt annotation)
TJP1, TJP2, and TJP3 are closely related scaffoldingproteins that link tight junction (TJ) transmembrane proteins suchas claudins, junctional adhesion molecules, and occludin to theactin cytoskeleton (PubMed:7798316, PubMed:9792688) The tightjunction acts to limit movement of substances through theparacellular space and as a boundary between the compositionallydistinct apical and basolateral plasma membrane domains ofepithelial and endothelial cells Necessary for lumenogenesis, andparticularly efficient epithelial polarization and barrierformation (By similarity) Plays a role in the regulation of cellmigration by targeting CDC42BPB to the leading edge of migratingcells (PubMed:21240187) Plays an important role in podosomeformation and associated function, thus regulating cell adhesionand matrix remodeling (PubMed:20930113) With TJP2 and TJP3,participates to the junctional retention and stability of thetranscription factor DBPA, but is not involved in its shuttling tothe nucleus (By similarity)
Cell-cell adherens junctions (AJs), the most common type of intercellular adhesions, are important for maintaining tissue architecture and cell polarity and can limit cell movement and proliferation. At AJs, E-cadherin serves as an essential cell adhesion molecules (CAMs). The cytoplasmic tail binds beta-catenin, which in turn binds alpha-catenin. Alpha-catenin is associated with F-actin bundles directly and indirectly. The integrity of the cadherin-catenin complex is negatively regulated by phosphorylation of beta-catenin by receptor tyrosine kinases (RTKs) and cytoplasmic tyrosine kinases (Fer, Fyn, Yes, and Src), which leads to dissociation of the cadherin-catenin complex. Integrity of this complex is positively regulated by beta -catenin phosphorylation by casein kinase II, and dephosphorylation by protein tyrosine phosphatases. Changes in the phosphorylation state of beta-catenin affect cell-cell adhesion, cell migration and the level of signaling beta-catenin. Wnt signaling acts as a positive regulator of beta-catenin by inhibiting beta-catenin degradation, which stabilizes beta-catenin, and causes its accumulation. Cadherin may acts as a negative regulator of signaling beta-catenin as it binds beta-catenin at the cell surface and thereby sequesters it from the nucleus. Nectins also function as CAMs at AJs, but are more highly concentrated at AJs than E-cadherin. Nectins transduce signals through Cdc42 and Rac, which reorganize the actin cytoskeleton, regulate the formation of AJs, and strengthen cell-cell adhesion.
Tight junctions (TJs) are essential for establishing a selectively permeable barrier to diffusion through the paracellular space between neighboring cells. TJs are composed of at least three types of transmembrane protein -occludin, claudin and junctional adhesion molecules (JAMs)- and a cytoplasmic 'plaque' consisting of many different proteins that form large complexes. These are proposed to be involved in junction assembly, barrier regulation, cell polarity, gene transcription, and other pathways.
Gap junctions contain intercellular channels that allow direct communication between the cytosolic compartments of adjacent cells. Each gap junction channel is formed by docking of two 'hemichannels', each containing six connexins, contributed by each neighboring cell. These channels permit the direct transfer of small molecules including ions, amino acids, nucleotides, second messengers and other metabolites between adjacent cells. Gap junctional communication is essential for many physiological events, including embryonic development, electrical coupling, metabolic transport, apoptosis, and tissue homeostasis. Communication through Gap Junction is sensitive to a variety of stimuli, including changes in the level of intracellular Ca2+, pH, transjunctional applied voltage and phosphorylation/dephosphorylation processes. This figure represents the possible activation routes of different protein kinases involved in Cx43 and Cx36 phosphorylation.
Cholera toxin (CTX) is one of the main virulence factors of Vibrio cholerae. Once secreted, CTX B-chain (CTXB) binds to ganglioside GM1 on the surface of the host's cells. After binding takes place, the entire CTX complex is carried from plasma membrane (PM) to endoplasmic reticulum (ER). In the ER, the A-chain (CTXA) is recognized by protein disulfide isomerase (PDI), unfolded, and delivered to the membrane where the membrane-associated ER-oxidase, Ero1, oxidizes PDI to release the CTXA into the protein-conducting channel, Sec61. CTXA is then retro-translocated to the cytosol and induces water and electrolyte secretion by increasing cAMP levels via adenylate cyclase (AC) to exert toxicity.Other than CTX, Vibrio cholerae generates several toxins that are perilous to eukaryotic cells. Zonula occludens toxin (ZOT) causes tight junction disruption through protein kinase C-dependent actin polymerization. RTX toxin (RtxA) causes actin depolymerization by covalently cross-linking actin monomers into dimers, trimers, and higher multimers. Vibrio cholerae cytolysin (VCC) is an important pore-forming toxin. The assembly of VCC anion channels in cells cause vacuolization and lysis.
Two major virulence factors of H. pylori are the vacuolating cytotoxin (VacA) and the cag type-IV secretion system (T4SS) and its translocated effector protein, cytotoxin-associated antigen A (CagA).VacA binds to lipid rafts and glycosylphosphatidylinositol-anchored proteins (GPI-APs) of the target cell membrane. After insertion into the plasma membrane, VacA channels are endocytosed and eventually reach late endosomal compartments, increasing their permeability to anions with enhancement of the electrogenic vacuolar ATPase (v-ATPase) proton pump. In the presence of weak bases, osmotically active acidotropic ions will accumulate in the endosomes. This leads to water influx and vesicle swelling, an essential step in vacuole formation. In addition, it is reported that the VacA cleavage product binds to the tyrosine phosphatase receptor zeta (Ptprz) on epithelial cells and the induced signaling leads to the phosphorylation of the G protein-coupled receptor kinase-interactor 1 (Git1) and induces ulcerogenesis in mice.The other virulence factor cag T4SS mediates the translocation of the effector protein CagA, which is subsequently phosphorylated by a Src kinase. Phosphorylated CagA interacts with the protein tyrosine phosphatase SHP-2, thus stimulating its phosphatase activity. Activated SHP-2 is able to induce MAPK signalling through Ras/Raf-dependent and -independent mechanisms. Deregulation of this pathway by CagA may lead to abnormal proliferation and movement of gastric epithelial cells.
Salmonella infection usually presents as a self-limiting gastroenteritis or the more severe typhoid fever and bacteremia. The common disease-causing Salmonella species in human is a single species, Salmonella enterica, which has numerous serovars.Following intestinal colonization Salmonella inject effector proteins into the host cells using a type III secretion system (T3SS), T3SS1. Then a small group of effector proteins induce rearrangement of the actin cytoskeleton resulting in membrane ruffles and rapid internalization of the bacteria.The T3SS2 is responsible for translocating effector proteins that direct Salmonella-containing vacuole (SCV) maturation. The majority of the bacteria are known to survive and replicate in SCV.
The kinases c-Src (Giepmans et al. 2001; Sorgen et al. 2004), PKc (Lin et al. 2003) and MAPK (Mograbi et al. 2003) play an essential role in the phosphorylation of Cx which leads to its degradation. c-Src appears to associate with and phosphorylate Cx43 leading to closure of gap junctions. Evidence suggests that v-src may activate MAPK, which in turn phosphorylates Cx43 on serine sites leading to channel gating (Zhou et al. 1999)
Human Hippo signaling is a network of reactions that regulates cell proliferation and apoptosis, centered on a three-step kinase cascade. The cascade was discovered by analysis of Drosophila mutations that lead to tissue overgrowth, and human homologues of its components have since been identified and characterized at a molecular level. Data from studies of mice carrying knockout mutant alleles of the genes as well as from studies of somatic mutations in these genes in human tumors are consistent with the conclusion that in mammals, as in flies, the Hippo cascade is required for normal regulation of cell proliferation and defects in the pathway are associated with cell overgrowth and tumorigenesis (Oh and Irvine 2010; Pan 2010; Zhao et al. 2010). This group of reactions is also notable for its abundance of protein:protein interactions mediated by WW domains and PPxY sequence motifs (Sudol and Harvey 2010).
There are two human homologues of each of the three Drosophila kinases, whose functions are well conserved: expression of human proteins rescues fly mutants. The two members of each pair of human homologues have biochemically indistinguishable functions. Autophosphorylated STK3 (MST2) and STK4 (MST1) (homologues of Drosophila Hippo) catalyze the phosphorylation and activation of LATS1 and LATS2 (homologues of Drosophila Warts) and of the accessory proteins MOB1A and MOB1B (homologues of Drosophila Mats). LATS1 and LATS2 in turn catalyze the phosphorylation of the transcriptional co-activators YAP1 and WWTR1 (TAZ) (homologues of Drosophila Yorkie).
In their unphosphorylated states, YAP1 and WWTR1 freely enter the nucleus and function as transcriptional co-activators. In their phosphorylated states, however, YAP1 and WWTR1 are instead bound by 14-3-3 proteins, YWHAB and YWHAE respectively, and sequestered in the cytosol.
Several accessory proteins are required for the three-step kinase cascade to function. STK3 (MST2) and STK4 (MST1) each form a complex with SAV1 (homologue of Drosophila Salvador), and LATS1 and LATS2 form complexes with MOB1A and MOB1B (homologues of Drosophila Mats).
In Drosophila a complex of three proteins, Kibra, Expanded, and Merlin, can trigger the Hippo cascade. A human homologue of Kibra, WWC1, has been identified and indirect evidence suggests that it can regulate the human Hippo pathway (Xiao et al. 2011). A molecular mechanism for this interaction has not yet been worked out and the molecular steps that trigger the Hippo kinase cascade in humans are unknown.
Four additional processes related to human Hippo signaling, although incompletely characterized, have been described in sufficient detail to allow their annotation. All are of physiological interest as they are likely to be parts of mechanisms by which Hippo signaling is modulated or functionally linked to other signaling processes. First, the caspase 3 protease cleaves STK3 (MST2) and STK4 (MST1), releasing inhibitory carboxyterminal domains in each case, leading to increased kinase activity and YAP1 / TAZ phosphorylation (Lee et al. 2001). Second, cytosolic AMOT (angiomotin) proteins can bind YAP1 and WWTR1 (TAZ) in their unphosphorylated states, a process that may provide a Hippo-independent mechanism to down-regulate the activities of these proteins (Chan et al. 2011). Third, WWTR1 (TAZ) and YAP1 bind ZO-1 and 2 proteins (Remue et al. 2010; Oka et al. 2010). Fourth, phosphorylated WWTR1 (TAZ) binds and sequesters DVL2, providing a molecular link between Hippo and Wnt signaling (Varelas et al. 2010)
Apoptotic cells show dramatic rearrangements of tight junctions, adherens junctions, and desmosomes (Abreu et al., 2000). Desmosome-specific members of the cadherin superfamily of cell adhesion molecules including desmoglein-3, plakophilin-1 and desmoplakin are cleaved by caspases after onset of apoptosis (Weiske et al., 2001). Cleavage results in the disruption of the desmosome structure and thus contributes to cell rounding and disintegration of the intermediate filament system (Weiske et al., 2001)
The RUNX1 transcription factor, which functions as part of the RUNX1:CBFB complex, was shown to directly transcriptionally regulate expression of several genes that encode components of tight junctions. Namely, RUNX1 binds to promoters of TJP1 (encoding ZO-1), OCLDN (encoding Occludin) and CLDN5 (encoding Claudin-5) and stimulates their transcription. Downregulation of RUNX1 by microRNA miR-18a negatively regulates expression of these three tight junction genes, which may affect the permeability of blood-tumor barrier in glioma (Miao et al. 2015)