241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Signal-transducing molecule The receptor systems forIL6, LIF, OSM, CNTF, IL11, CTF1 and BSF3 can utilize IL6ST forinitiating signal transmission Binding of IL6 to IL6R inducesIL6ST homodimerization and formation of a high-affinity receptorcomplex, which activates Janus kinases (PubMed:2261637) Thatcauses phosphorylation of IL6ST tyrosine residues which in turnactivates STAT3 (PubMed:19915009, PubMed:23294003) Mediatessignals which regulate immune response, hematopoiesis, paincontrol and bone metabolism (By similarity) Has a role inembryonic development (By similarity) Does not bind IL6(PubMed:2261637) Essential for survival of motor and sensoryneurons and for differentiation of astrocytes (By similarity)Required for expression of TRPA1 in nociceptive neurons (Bysimilarity) Required for the maintenance of PTH1R expression inthe osteoblast lineage and for the stimulation of PTH-inducedosteoblast differentiation (By similarity) Required for normaltrabecular bone mass and cortical bone composition (Bysimilarity)
Cytokines are soluble extracellular proteins or glycoproteins that are crucial intercellular regulators and mobilizers of cells engaged in innate as well as adaptive inflammatory host defenses, cell growth, differentiation, cell death, angiogenesis, and development and repair processes aimed at the restoration of homeostasis. Cytokines are released by various cells in the body, usually in response to an activating stimulus, and they induce responses through binding to specific receptors on the cell surface of target cells. Cytokines can be grouped by structure into different families and their receptors can likewise be grouped.
Pluripotent stem cells (PSCs) are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. The types of PSCs known to date include embryonic stem (ES) and induced pluripotent stem (iPS) cells. ES cells are derived from the inner cell mass (ICM) of blastocyst-stage embryos. iPS cells are generated by reprogramming somatic cells back to pluripotent state with defined reprogramming factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors). PSCs including ES cells and iPS cells are categorized into two groups by their morphology, gene expression profile and external signal dependence. Conventional mouse-type ES/iPS cells are called 'naive state' cells. They are mainly maintained under the control of LIF and BMP signaling. On the other hand, human-type ES/iPS cells, which are in need of Activin and FGF signaling, are termed 'primed state'. However, these signaling pathways converge towards the activation of a core transcriptional network that is similar in both groups and involves OCt4, Nanog and Sox2. The three transcription factors and their downstream target genes coordinately promote self-renewal and pluripotency.
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is one of a handful of pleiotropic cascades used to transduce a multitude of signals for development and homeostasis in animals, from humans to flies. In mammals, the JAK/STAT pathway is the principal signaling mechanism for a wide array of cytokines and growth factors. Following the binding of cytokines to their cognate receptor, STATs are activated by members of the JAK family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. In addition to the activation of STATs, JAKs mediate the recruitment of other molecules such as the MAP kinases, PI3 kinase etc. These molecules process downstream signals via the Ras-Raf-MAP kinase and PI3 kinase pathways which results in the activation of additional transcription factors.
Interleukin (IL)-17-producing helper T (Th17) cells serve as a subset of CD4+ T cells involved in epithelial cell- and neutrophil mediated immune responses against extracellular microbes and in the pathogenesis of autoimmune diseases. In vivo, Th17 differentiation requires antigen presentation and co-stimulation, and activation of antigen presenting-cells (APCs) to produce TGF-beta, IL-6, IL-1, IL-23 and IL-21. This initial activation results in the activation and up-regulation of STAT3, ROR(gamma)t and other transcriptional factors in CD4+ T cells, which bind to the promoter regions of the IL-17, IL-21 and IL-22 genes and induce IL-17, IL-21 and IL-22. In contrast, the differentiation of Th17 cells and their IL-17 expression are negatively regulated by IL-2, Th2 cytokine IL-4, IL-27 and Th1 cytokine IFN-gamma through STAT5, STAT6 and STAT1 activation, respectively. Retinoid acid and the combination of IL-2 and TGF-beta upregulate Foxp3, which also downregulates cytokines like IL-17 and IL-21. The inhibition of Th17 differentiation may serve as a protective strategy to 'fine-tune' the expression IL-17 so it does not cause excessive inflammation. Thus, balanced differentiation of Th cells is crucial for immunity and host protection.
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus, and is associated with the pathogenesis of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and Multicentric Castleman's disease (MCD). Like all other herpesviruses, KSHV displays two modes of life cycle, latency and lytic replication, which are characterized by the patterns of viral gene expression. Genes expressed in latency (LANA, v-cyclin, v-FLIP, Kaposins A, B and C and viral miRNAs) are mainly thought to facilitate the establishment of life long latency in its host and survival against the host innate, and adaptive immune surveillance mechanisms. Among the viral proteins shown to be expressed during lytic replication are potent signaling molecules such as vGPCR, vIL6, vIRFs, vCCLs, K1 and K15, which have been implicated experimentally in the angiogenic and inflammatory phenotype observed in KS lesions. Several of these latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of severe human malignancies.
There is a strong association between viruses and the development of human malignancies. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Via expression of many potent oncoproteins, these tumor viruses promote an aberrant cell-proliferation via modulating cellular cell-signaling pathways and escape from cellular defense system such as blocking apoptosis. Human tumor virus oncoproteins can also disrupt pathways that are necessary for the maintenance of the integrity of host cellular genome. Viruses that encode such activities can contribute to initiation as well as progression of human cancers.
Interleukin-6 (IL-6) is a pleiotropic cytokine with roles in processes including immune regulation, hematopoiesis, inflammation, oncogenesis, metabolic control and sleep. It is the founding member of a family of IL-6-related cytokines such as IL-11, IL-27 leukemia inhibitory factor (LIF), cilliary neurotrophic factor (CNTF) and oncostatin M. The IL-6 receptor (IL6R) consists of an alpha subunit that specifically binds IL-6 and a beta subunit, IL6RB or gp130, which is the signaling component of all the receptors for cytokines related to IL-6. IL6R alpha exists in transmembrane and soluble forms. The transmembrane form is mainly expressed by hepatocytes, neutrophils, monocytes/macrophages, and some lymphocytes. Soluble forms of IL6R (sIL6R) are also expressed by these cells. Two major mechanisms for the production of sIL6R have been proposed. Alternative splicing generates a transcript lacking the transmembrane domain by using splicing donor and acceptor sites that flank the transmembrane domain coding region. This also introduces a frameshift leading to the incorporation of 10 additional amino acids at the C terminus of sIL6R.A second mechanism for the generation of sIL6R is the proteolytic cleavage or 'shedding' of membrane-bound IL-6R. Two proteases ADAM10 and ADAM17 are thought to contribute to this (Briso et al. 2008). sIL6R can bind IL6 and stimulate cells that express gp130 but not IL6R alpha, a process that is termed trans-signaling. This explains why many cells, including hematopoietic progenitor cells, neuronal cells, endothelial cells, smooth muscle cells, and embryonic stem cells, do not respond to IL6 alone, but show a remarkable response to IL6/sIL6R. It is clear that the trans-signaling pathway is responsible for the pro-inflammatory activities of IL-6 whereas the membrane bound receptor governs regenerative and anti-inflammatory IL-6 activitiesIL6R signal transduction is mediated by two pathways:the JAK-STAT (Janus family tyrosine kinase-signal transducer and activator of transcription) pathway and the Ras-MAPK (mitogen-activated protein kinase) pathway. Negative regulators of IL-6 signaling include SOCS (suppressor of cytokine signals) and SHP2. Within the last few years different antibodies have been developed to inhibit IL-6 activity, and the first such antibodies have been introduced into the clinic for the treatment of inflammatory diseases (Kopf et al. 2010)
Mitogen-activated protein kinase kinase MAP2K1 (also known as MEK1) is a dual threonine and tyrosine recognition kinase that phosphorylates and activates MAPK3 (ERK1) (Ohren et al. 2004; Roskoski 2012a)
Mitogen-activated protein kinase kinase MAP2K2 (also known as MEK2) is a dual threonine and tyrosine recognition kinase that phosphorylates and activates MAPK1 (ERK2) (Ohren et al. 2004; Roskoski 2012)
The members involved in (interleukin)-6-type cytokine signalling are the IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CTF1) and cardiotrophin-like cytokine factor 1 (CLCF1). Receptors involved in recognition of the IL-6-type cytokines can be subdivided in the non-signalling alpha-receptors (IL6R, IL 11R, and CNTFR) and the signal transducing receptors (gp130, LIFR, and OSMR). The latter associate with JAKs and become tyrosine phosphorylated in response to cytokine stimulation (Heinrich et al. 1998, 2003). IL27 and IL35 belongs to IL12 cytokine family but they share gp130 as a component of signalling receptor, along with IL-6, IL-11, LIF, OSM, CNTF, CTF1 and CLCF1
Interleukin 35 (IL35) is an IL12 family cytokine produced by regulatory but not effector T-cells. It is a dimeric protein composed of IL-12RB2 and IL27RA chains. IL35 suppresses inflammatory responses of immune cells
Interleukin-27 (IL27) is a heterodimeric cytokine that contains Epstein-Barr virus–induced gene 3 (EBI3) and IL27p28 (IL27). It signals through a receptor composed of Interleukin-6 receptor subunit beta (IL6ST, gp130), which is utilized by many cytokines, and Interleukin-27 receptor subunit alpha (IL27RA, WSX-1, TCCR) (Yoshida & Hunter 2015)