241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Core component of nucleosome Nucleosomes wrap andcompact DNA into chromatin, limiting DNA accessibility to thecellular machineries which require DNA as a template Histonesthereby play a central role in transcription regulation, DNArepair, DNA replication and chromosomal stability DNAaccessibility is regulated via a complex set of post-translationalmodifications of histones, also called histone code, andnucleosome remodeling
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
Alcoholism, also called dependence on alcohol (ethanol), is a chronic relapsing disorder that is progressive and has serious detrimental health outcomes. As one of the primary mediators of the rewarding effects of alcohol, dopaminergic ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) have been identified. Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. The decreased CREB function in the NAc may promote the intake of drugs of abuse to achieve an increase in reward and thus may be involved in the regulation of positive affective states of addiction. PKA signaling also affects NMDA receptor activity and may play an important role in neuroadaptation in response to chronic alcohol exposure.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by the production of IgG autoantibodies that are specific for self-antigens, such as DNA, nuclear proteins and certain cytoplasmic components, in association with a diverse array of clinical manifestations. The primary pathological findings in patients with SLE are those of inflammation, vasculitis, immune complex deposition, and vasculopathy. Immune complexes comprising autoantibody and self-antigen is deposited particulary in the renal glomeruli and mediate a systemic inflammatory response by activating complement or via Fc{gamma}R-mediated neutrophil and macrophage activation. Activation of complement (C5) leads to injury both through formation of the membrane attack complex (C5b-9) or by generation of the anaphylatoxin and cell activator C5a. Neutrophils and macrophages cause tissue injury by the release of oxidants and proteases.
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
Alcoholism, also called dependence on alcohol (ethanol), is a chronic relapsing disorder that is progressive and has serious detrimental health outcomes. As one of the primary mediators of the rewarding effects of alcohol, dopaminergic ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) have been identified. Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. The decreased CREB function in the NAc may promote the intake of drugs of abuse to achieve an increase in reward and thus may be involved in the regulation of positive affective states of addiction. PKA signaling also affects NMDA receptor activity and may play an important role in neuroadaptation in response to chronic alcohol exposure.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by the production of IgG autoantibodies that are specific for self-antigens, such as DNA, nuclear proteins and certain cytoplasmic components, in association with a diverse array of clinical manifestations. The primary pathological findings in patients with SLE are those of inflammation, vasculitis, immune complex deposition, and vasculopathy. Immune complexes comprising autoantibody and self-antigen is deposited particulary in the renal glomeruli and mediate a systemic inflammatory response by activating complement or via Fc{gamma}R-mediated neutrophil and macrophage activation. Activation of complement (C5) leads to injury both through formation of the membrane attack complex (C5b-9) or by generation of the anaphylatoxin and cell activator C5a. Neutrophils and macrophages cause tissue injury by the release of oxidants and proteases.
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
Alcoholism, also called dependence on alcohol (ethanol), is a chronic relapsing disorder that is progressive and has serious detrimental health outcomes. As one of the primary mediators of the rewarding effects of alcohol, dopaminergic ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) have been identified. Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. The decreased CREB function in the NAc may promote the intake of drugs of abuse to achieve an increase in reward and thus may be involved in the regulation of positive affective states of addiction. PKA signaling also affects NMDA receptor activity and may play an important role in neuroadaptation in response to chronic alcohol exposure.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by the production of IgG autoantibodies that are specific for self-antigens, such as DNA, nuclear proteins and certain cytoplasmic components, in association with a diverse array of clinical manifestations. The primary pathological findings in patients with SLE are those of inflammation, vasculitis, immune complex deposition, and vasculopathy. Immune complexes comprising autoantibody and self-antigen is deposited particulary in the renal glomeruli and mediate a systemic inflammatory response by activating complement or via Fc{gamma}R-mediated neutrophil and macrophage activation. Activation of complement (C5) leads to injury both through formation of the membrane attack complex (C5b-9) or by generation of the anaphylatoxin and cell activator C5a. Neutrophils and macrophages cause tissue injury by the release of oxidants and proteases.
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
Alcoholism, also called dependence on alcohol (ethanol), is a chronic relapsing disorder that is progressive and has serious detrimental health outcomes. As one of the primary mediators of the rewarding effects of alcohol, dopaminergic ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) have been identified. Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. The decreased CREB function in the NAc may promote the intake of drugs of abuse to achieve an increase in reward and thus may be involved in the regulation of positive affective states of addiction. PKA signaling also affects NMDA receptor activity and may play an important role in neuroadaptation in response to chronic alcohol exposure.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by the production of IgG autoantibodies that are specific for self-antigens, such as DNA, nuclear proteins and certain cytoplasmic components, in association with a diverse array of clinical manifestations. The primary pathological findings in patients with SLE are those of inflammation, vasculitis, immune complex deposition, and vasculopathy. Immune complexes comprising autoantibody and self-antigen is deposited particulary in the renal glomeruli and mediate a systemic inflammatory response by activating complement or via Fc{gamma}R-mediated neutrophil and macrophage activation. Activation of complement (C5) leads to injury both through formation of the membrane attack complex (C5b-9) or by generation of the anaphylatoxin and cell activator C5a. Neutrophils and macrophages cause tissue injury by the release of oxidants and proteases.
Necroptosis is a programmed form of necrosis. It can be initiated by different stimuli, such as tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), interferon (IFN), LPS, viral DNA or RNA, DNA-damage agent and requires the kinase activity of receptor-interacting protein 1 (RIPK1) and RIPK3. Its execution involves ROS generation, calcium overload, the opening of the mitochondrial permeability transition pore, mitochondrial fission, inflammatory response and chromatinolysis. Necroptosis participates in many pathogenesis of diseases, including neurological diseases, retinal disorders, acute kidney injury, inflammatory diseases and microbial infections.
Alcoholism, also called dependence on alcohol (ethanol), is a chronic relapsing disorder that is progressive and has serious detrimental health outcomes. As one of the primary mediators of the rewarding effects of alcohol, dopaminergic ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) have been identified. Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. The decreased CREB function in the NAc may promote the intake of drugs of abuse to achieve an increase in reward and thus may be involved in the regulation of positive affective states of addiction. PKA signaling also affects NMDA receptor activity and may play an important role in neuroadaptation in response to chronic alcohol exposure.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by the production of IgG autoantibodies that are specific for self-antigens, such as DNA, nuclear proteins and certain cytoplasmic components, in association with a diverse array of clinical manifestations. The primary pathological findings in patients with SLE are those of inflammation, vasculitis, immune complex deposition, and vasculopathy. Immune complexes comprising autoantibody and self-antigen is deposited particulary in the renal glomeruli and mediate a systemic inflammatory response by activating complement or via Fc{gamma}R-mediated neutrophil and macrophage activation. Activation of complement (C5) leads to injury both through formation of the membrane attack complex (C5b-9) or by generation of the anaphylatoxin and cell activator C5a. Neutrophils and macrophages cause tissue injury by the release of oxidants and proteases.
Lysine deacetylases (KDACs), historically referred to as histone deacetylases (HDACs), are divided into the Rpd3/Hda1 metal-dependent 'classical HDAC family' (de Ruijter et al. 2003, Verdin et al. 2003) and the unrelated sirtuins (Milne & Denu 2008). Phylogenetic analysis divides human KDACs into four classes (Gregoretti et al. 2004): Class I includes HDAC1, 2, 3 and 8; Class IIa includes HDAC4, 5, 7 and 9; Class IIb includes HDAC6 and 10; Class III are the sirtuins (SIRT1-7); Class IV has one member, HDAC11 (Gao et al. 2002). Class III enzymes use an NAD+ cofactor to perform deacetylation (Milne & Denu 2008, Yang & Seto 2008), the others classes use a metal-dependent mechanism (Gregoretti et al. 2004) to catalyze the hydrolysis of acetyl-L-lysine side chains in histone and non-histone proteins yielding L-lysine and acetate. X-ray crystal structures are available for four human HDACs; these structures have conserved active site residues, suggesting a common catalytic mechanism (Lombardi et al. 2011). They require a single transition metal ion and are typically studied in vitro as Zn2+-containing enzymes, though in vivo HDAC8 exhibits increased activity when substituted with Fe2+ (Gantt et al. 2006). The structurally-related enzyme acetylpolyamine amidohydrolase (APAH) (Leipe & Landsman 1997) exhibits optimal activity with Mn2+, followed closely by Zn2+ (Sakurada et al. 1996).HDACs are often part of multi-protein transcriptional complexes that are recruited to gene promoters, regulating transcription without direct DNA binding. With the exception of HDAC8, all class I members can be catalytic subunits of multiprotein complexes (Yang & Seto 2008). HDAC1 and HDAC2 interact to form the catalytic core of several multisubunit complexes including Sin3, nucleosome remodeling deacetylase (NuRD) and corepressor of REST (CoREST) complexes (Grozinger & Schreiber 2002). HDAC3 is part of the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) complex or the homologous nuclear receptor corepressor (NCoR) (Li et al. 2000, Wen et al. 2000, Zhang et al. 2002, Yoon et al. 2003, Oberoi et al. 2011) which are involved in a wide range of processes including metabolism, inflammation, and circadian rhythms (Mottis et al. 2013). Class IIa HDACs (HDAC4, -5, -7, and -9) shuttle between the nucleus and cytoplasm (Yang & Seto 2008, Haberland et al. 2009). The nuclear export of class IIa HDACs requires phosphorylation stimulated by calcium or other stimuli. They appear to have been evolutionarily inactivated as enzymes, having acquired a histidine substitution of the tyrosine residue in the active site of the mammalian deacetylase domain (H976 in humans) (Lahm et al. 2007, Schuetz et al. 2008). Instead they function as transcriptional corepressors for the MEF2 family of transcription factors (Yang & Gregoire 2005) .Histones are the primary substrate for most HDACs except HDAC6 which is predominantly cytoplasmic and acts on alpha-tublin (Hubbert et al. 2002, Zhang et al. 2003, Boyault et al. 2007). HDACs also deacetylate proteins such as p53, E2F1, RelA, YY1, TFIIE, BCL6 and TFIIF (Glozak et al. 2005).Histone deacetylases are targeted by structurally diverse compounds known as HDAC inhibitors (HDIs) (Marks et al. 2000). These can induce cytodifferentiation, cell cycle arrest and apoptosis of transformed cells (Marks et al. 2000, Bolden et al. 2006). Some HDIs have significant antitumor activity (Marks and Breslow 2007, Ma et al. 2009) and at least two are approved anti-cancer drugs.The coordinates of post-translational modifications represented and described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature
Histone acetyltransferases (HATs) involved in histone modifications are referred to as A-type or nuclear HATs. They can be grouped into at least four families based on sequence conservation within the HAT domain: Gcn5/PCAF, MYST, p300/CBP and Rtt109. The p300/CBP and Rtt109 families are specific to metazoans and fungi respectively (Marmorstein & Trievel 2009). Gcn5/PCAF and MYST family members have no significant sequence homology but share a globular alpha/beta fold with a common structure involved in acetyl-Coenzyme A (ACA) binding. Both use a conserved glutamate residue for the acetyl transfer reaction but may not share a common catalytic mechanism (Trievel et al. 1999, Tanner et al. 1999, Yan et al. 2002, Berndsen et al. 2007). The p300/CBP HAT domain has no homology with the other families but some structural conservation within theACA-binding core (Liu et al. 2008). In addition to histone acetylation, members of all 3 human HAT families have been shown to acetylate non-histones (Glozak et al. 2005). HATs and histone deacetylase (HDAC) enzymes generally act not alone but as part of multiprotein complexes. There are numerous examples in which subunits of HAT or HDAC complexes influence their substrate specificity and lysine preference, which in turn, affect the broader functions of these enzymes (Shahbazian & Grunstein 2007). N.B. The coordinates of post-translational modifications represented and described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature
Arginine methylation is a common post-translational modification; around 2% of arginine residues are methylated in rat liver nuclei (Boffa et al. 1977). Arginine can be methylated in 3 different ways: monomethylarginine (MMA); NG,NG-asymmetric dimethylarginine (ADMA) and NG,N'G-symmetric dimethylarginine (SDMA). The formation of MMA, ADMA and SDMA in mammalian cells is carried out by members of a family of nine protein arginine methyltransferases (PRMTs) (Bedford & Clarke 2009). Type I, II and III PRMTs generate MMA on one of the two terminal guanidino nitrogen atoms. Subsequent generation of asymmetric dimethylarginine (ADMA) is catalysed by the type I enzymes PRMT1, PRMT2, PRMT3, co-activator-associated arginine methyltransferase 1 (CARM1), PRMT6 and PRMT8. Production of symmetric dimethylarginine (SDMA) is catalysed by the type II enzymes PRMT5 and PRMT7. On certain substrates, PRMT7 also functions as a type III enzyme, generating MMA only. PRMT9 activity has not been characterized. No known enzyme is capable of both ADMA and SDMA modifications. Arginine methylation is regarded as highly stable; no arginine demethylases are known (Yang & Bedford 2013). Most PRMTs methylate glycine- and arginine-rich (GAR) motifs in their substrates (Boffa et al. 1977). CARM1 methylates a proline-, glycine- and methionine-rich (PGM) motif (Cheng et al. 2007). PRMT5 can dimethylate arginine residues in GAR and PGM motifs (Cheng et al. 2007, Branscombe et al. 2001). PRMTs are widely expressed and are constitutively active as purified recombinant proteins. However, PRMT activity can be regulated through PTMs, association with regulatory proteins, subcellular compartmentalization and factors that affect enzyme-substrate interactions. The target sites of PRMTs are influenced by the presence of other PTMs on their substrates. The best characterized examples of this are for histones. Histone H3 lysine-19 acetylation (H3K18ac) primes the histone tail for asymmetric dimethylation at arginine-18 (H3R17me2a) by CARM1 (An et al. 2003, Daujat et al. 2002, Yue et al. 2007). H3 lysine-10 acetylation (H3K9ac) blocks arginine-9 symmetric dimethylation (H3R8me2s) by PRMT5 (Pal et al. 2004). H4R3me2a catalyzed by PRMT1 favours subsequent acetylation of the histone H4 tail (Huang et al. 2005). At the same time histone H4 lysine-5 acetylation (H4K5ac) makes the H4R3 motif a better substrate for PRMT5 compared with PRMT1, thereby moving the balance from an activating ADMA mark to a suppressive SDMA mark at the H4R3 motif (Feng et al. 2011). Finally methylation of Histone H3 on arginine-3 (H3R2me2a) by PRMT6 blocks methylation of H3 lysine-5 by the MLL complex (H3K4me3), and vice versa, methylation of H3K4me3 prevents H3R2me2a methylation (Guccione et al. 2007, Kirmizis et al. 2007, Hyllus et al. 2007).\n\nN.B. The coordinates of post-translational modifications represented and described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature
DUBs of the Ub C-terminal Hydrolase (UCH) family are thiol proteases that have an N-terminal catalytic domain sometimes followed by C-terminal extensions that mediate protein-protein interactions. Humans have four UCH DUBs (UCH-L1, UCH-L3, UCH37/UCH-L5, and BAP1) that can be divided into the smaller UCH DUBs (UCH-L1 and UCH-L3), which cleave small leaving groups from the C-terminus of ubiquitin (Larsen et al. 1998), and the larger UCH DUBs (UCH37 and BAP1), which can disassemble poly-Ub chains (Misaghi et al. 2009, Lam et al. 1997)
Ub-specific processing proteases (USPs) are the largest of the DUB families with more than 50 members in humans. The USP catalytic domain varies considerably in size and consists of six conserved motifs with N- or C-terminal extensions and insertions occurring between the conserved motifs (Ye et al. 2009). Two highly conserved regions comprise the catalytic triad, the Cys-box (Cys) and His-box (His and Asp/Asn) (Nijman et al. 2005, Ye et al. 2009, Reyes-Turcu & Wilkinson 2009). They recognize their substrates by interactions of the variable regions with the substrate protein directly, or via scaffolds or adapters in multiprotein complexes
The JAB1/MPN +/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond at or near the the attachment point of polyubiquitin and substrate. PSMD14 (RPN11), STAMBP (AMSH), STAMBPL1 (AMSH-LP), and BRCC3 (BRCC36) are highly specific for the K63 poly-Ub linkage, which may be a general characteristic (Eletr & Wilkinson 2014). Two multisubunit complexes represented elsewhere in Reactome contain JAMM DUBs. The proteasome 19S lid complex includes PSMD14, an endopeptidase that cleaves poly-Ub chains from substrates as they are degraded by the proteasome (Verma et al. 2002). The COP9-Signalosome contains COPS5 (CSN5), which deconjugates the Ub-like modifier Nedd8, modulating the activity of the SCF E3 ligase (Cope et al. 2002). JAMM DUB catalysis requires nucleophilic attack on the carbonyl carbon of the isopeptide bond by an activated water molecule bound to Zn2+ and a conserved glutamate. A negatively-charged tetrahedral transition state ensues, and a nearby conserved Ser/Thr in the JAMM domains stabilizes the oxyanion. The tetrahedral intermediate then collapses and the Glu serves as a general base donating a proton to the leaving Lys side chain (Ambroggio et al. 2004)