241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Adapter protein which acts downstream of severalmembrane receptors including cytokine, antigen, hormone, cellmatrix and growth factor receptors to regulate multiple signalingpathways Regulates osteoclast differentiation mediating theTNFRSF11A/RANK signaling In allergic response, it plays a role inmast cells activation and degranulation through PI-3-kinaseregulation Also involved in the regulation of cell proliferationand hematopoiesis
The Ras proteins are GTPases that function as molecular switches for signaling pathways regulating cell proliferation, survival, growth, migration, differentiation or cytoskeletal dynamism. Ras proteins transduce signals from extracellular growth factors by cycling between inactive GDP-bound and active GTP-bound states. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Activated RAS (RAS-GTP) regulates multiple cellular functions through effectors including Raf, phosphatidylinositol 3-kinase (PI3K) and Ral guanine nucleotide-dissociation stimulator (RALGDS).
Sphingomyelin (SM) and its metabolic products are now known to have second messenger functions in a variety of cellular signaling pathways. Particularly, the sphingolipid metabolites, ceramide (Cer) and sphingosine-1-phosphate (S1P), have emerged as a new class of potent bioactive molecules. Ceramide can be generated de novo or by hydrolysis of membrane sphingomyelin by sphingomyelinase (SMase). Ceramide is subsequently metabolized by ceramidase to generate sphingosine (Sph) which in turn produces S1P through phosphorylation by sphingosine kinases 1 and 2 (SphK1, 2). Both ceramide and S1P regulate cellular responses to stress, with generally opposing effects. S1P functions as a growth and survival factor, acting as a ligand for a family of G protein-coupled receptors, whereas ceramide activates intrinsic and extrinsic apoptotic pathways through receptor-independent mechanisms.
Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). The PLD-produced PA activates signaling proteins and acts as a node within the membrane to which signaling proteins translocate. Several signaling proteins, including Raf-1 and mTOR, directly bind PA to mediate translocation or activation, respectively.
The osteoclasts, multinucleared cells originating from the hematopoietic monocyte-macrophage lineage, are responsible for bone resorption. Osteoclastogenesis is mainly regulated by signaling pathways activated by RANK and immune receptors, whose ligands are expressed on the surface of osteoblasts. Signaling from RANK changes gene expression patterns through transcription factors like NFATc1 and characterizes the active osteoclast.
Fc epsilon RI-mediated signaling pathways in mast cells are initiated by the interaction of antigen (Ag) with IgE bound to the extracellular domain of the alpha chain of Fc epsilon RI. The activation pathways are regulated both positively and negatively by the interactions of numerous signaling molecules. Mast cells that are thus activated release preformed granules which contain biogenic amines (especially histamines) and proteoglycans (especially heparin). The activation of phospholipase A2 causes the release of membrane lipids followed by development of lipid mediators such as leukotrienes (LTC4, LTD4 and LTE4) and prostaglandins (especially PDG2). There is also secretion of cytokines, the most important of which are TNF-alpha, IL-4 and IL-5. These mediators and cytokines contribute to inflammatory responses.
Phagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of a pluripotent stem cell. The natural history of CML has a triphasic clinical course comprising of an initial chronic phase (CP), which is characterized by expansion of functionally normal myeloid cells, followed by an accelerated phase (AP) and finally a more aggressive blast phase (BP), with loss of terminal differentiation capacity. On the cellular level, CML is associated with a specific chromosome abnormality, the t(9; 22) reciprocal translocation that forms the Philadelphia (Ph) chromosome. The Ph chromosome is the result of a molecular rearrangement between the c-ABL proto-oncogene on chromosome 9 and the BCR (breakpoint cluster region) gene on chromosome 22. The BCR/ABL fusion gene encodes p210 BCR/ABL, an oncoprotein, which, unlike the normal p145 c-Abl, has constitutive tyrosine kinase activity and is predominantly localized in the cytoplasm. While fusion of c-ABL and BCR is believed to be the primary cause of the chronic phase of CML, progression to blast crisis requires other molecular changes. Common secondary abnormalities include mutations in TP53, RB, and p16/INK4A, or overexpression of genes such as EVI1. Additional chromosome translocations are also observed,such as t(3;21)(q26;q22), which generates AML1-EVI1.
Stem cell factor (SCF) is a growth factor with membrane bound and soluble forms. It is expressed by fibroblasts and endothelial cells throughout the body, promoting proliferation, migration, survival and differentiation of hematopoetic progenitors, melanocytes and germ cells.(Linnekin 1999, Ronnstrand 2004, Lennartsson and Ronnstrand 2006). The receptor for SCF is KIT, a tyrosine kinase receptor (RTK) closely related to the receptors for platelet derived growth factor receptor, colony stimulating factor 1 (Linnekin 1999) and Flt3 (Rosnet et al. 1991). Four isoforms of c-Kit have been identified in humans. Alternative splicing results in isoforms of KIT differing in the presence or absence of four residues (GNNK) in the extracellular region. This occurs due to the use of an alternate 5' splice donor site. These GNNK+ and GNNK- variants are co-expressed in most tissues; the GNNK- form predominates and was more strongly tyrosine-phosphorylated and more rapidly internalized (Ronnstrand 2004). There are also splice variants that arise from alternative usage of splice acceptor site resulting in the presence or absence of a serine residue (Crosier et al., 1993). Finally, there is an alternative shorter transcript of KIT expressed in postmeiotic germ cells in the testis which encodes a truncated KIT consisting only of the second part of the kinase domain and thus lackig the extracellular and transmembrane domains as well as the first part of the kinase domain (Rossi et al. 1991). Binding of SCF homodimers to KIT results in KIT homodimerization followed by activation of its intrinsic tyrosine kinase activity. KIT stimulation activates a wide array of signalling pathways including MAPK, PI3K and JAK/STAT (Reber et al. 2006, Ronnstrand 2004). Defects of KIT in humans are associated with different genetic diseases and also in several types of cancers like mast cell leukaemia, germ cell tumours, certain subtypes of malignant melanoma and gastrointestinal tumours
8p11 myeloproliferative syndrome (EMS) is an aggressive disorder that is associated with a translocation event at the FGFR1 gene on chromosome 8p11. Typical symptoms upon diagnosis include eosinophilia and associated T-cell lymphoblastic lymphoma; the disease rapidly advances to acute leukemia, usually of myeloid lineage. At present the only effective treatment is allogenic stem cell transplantation (reviewed in Jackson, 2010). At the molecular level, EMS appears to be caused by translocation events on chromosome 8 that create gene fusions between the intracellular domain of FGFR1 and an N-terminal partner gene that encodes a dimerization domain. The resulting fusion protein dimerizes in a ligand-independent fashion based the N-terminal domain provided by the partner protein and stimulates constititutive downstream FGFR1 signaling without altering the intrisic kinase activity of the receptor. To date, 11 partner genes have been identified: ZMYM2, FGFR1OP, FGFR1OP2, HERVK, TRIM24, CUX1, BCR, CEP110, LRRFIP1, MYO18A and CPSF6, although not all have been functionally characterized (reviewed in Jackson, 2010, Turner and Grose, 2010; Wesche, 2011). Where examined, cell lines carrying FGFR1 fusion genes have been shown to be transforming and to support IL3-independent proliferation through anti-apoptotic, prosurvival pathways(Lelievre, 2008; Ollendorff, 1999; Chase, 2007; Guasch, 2001; Wasag 2011; Roumiantsev, 2004; Demiroglu, 2001; Smedley, 1999). Signaling appears to occur predominantly through PLCgamma, PI3K and STAT signaling, with a more minor contribution from MAPK activation. Because the fusion proteins lack the FRS2-binding site, the mechanism of MAPK activation is unclear. Recruitment of GRB2:SOS1 through recruitment of SHC is one possibility (Guasch, 2001)
The lipid raft resident adaptor molecules LAT1 and Non-T cell activation linker (NTAL), also known as linker for activation of B cells (LAB)/LAT2 are known participants in the regulation of mast cell calcium responses. Both LAT and NTAL are expressed and phosphorylated following engagement of FCERI on mast cells. NTAL is functionally and topographically different from LAT. There is a considerable debate on the role of NTAL in mast cell. Depending on the circumstances, NTAL appears to have a dual role as positive and negative regulator of MC responses elicited via FCERI. Studies conducted in bone marrow-derived mast cells (BMMCs) of mice lacking NTAL displayed enhanced FCERI-mediated tyrosine phosphorylation of several substrates, calcium response, degranulation, and cytokine production. This indicated that NTAL negatively regulates FCERI-mediated degranulation. However, in mice lacking both LAT and NTAL showed severe block in FCERI-mediated signaling than BMMCs deficient in LAT alone, suggesting that NTAL also shares a redundant function with LAT to play a positive role (Draberova et al. 2007, Orr & McVicar. 2011, Zhu et al. 2004, Volna et al. 2004)
The RET proto-oncogene encodes a receptor tyrosine kinase expressed primarily in urogenital precursor cells, spermatogonocytes, dopaminergic neurons, motor neurons and neural crest progenitors and derived cells. It is essential for kidney genesis, spermatogonial self-renewal and survivial, specification, migration, axonal growth and axon guidance of developing enteric neurons, motor neurons, parasympathetic neurons and somatosensory neurons (Schuchardt et al. 1994, Enomoto et al. 2001, Naughton et al. 2006, Kramer et al. 2006, Luo et al. 2006, 2009). RET was identified as the causative gene for human papillary thyroid carcinoma (Grieco et al. 1990), multiple endocrine neoplasia (MEN) type 2A (Mulligan et al. 1993), type 2B (Hofstra et al. 1994, Carlson et al. 1994), and Hirschsprung's disease (Romeo et al. 1994, Edery et al. 1994). RET contains a cadherin-related motif and a cysteine-rich domain in the extracellular domain (Takahashi et al. 1988). It is the receptor for members of the glial cell-derived neurotrophic factor (GDNF) family of ligands, GDNF (Lin et al. 1993), neurturin (NRTN) (Kotzbauer et al. 1996), artemin (ARTN) (Baloh et al. 1998), and persephin (PSPN) (Milbrandt et al. 1998), which form a family of neurotrophic factors. To stimulate RET, these ligands need a glycosylphosphatidylinositol (GPI)-anchored co-receptor, collectively termed GDNF family receptor-alpha (GFRA) (Treanor et al. 1996, Jing et al. 1996). The four members of this family have different, overlapping ligand preferences. GFRA1, GFRA2, GFRA3, and GFRA4 preferentially bind GDNF, NRTN, ARTN and PSPN, respectively (Jing et al. 1996, 1997, Creedon et al. 1997, Baloh et al. 1997, 1998, Masure et al. 2000). The GFRA co-receptor can come from the same cell as RET, or from a different cell. When the co-receptor is produced by the same cell as RET, it is termed cis signaling. When the co-receptor is produced by another cell, it is termed trans signaling. Cis and trans activation has been proposed to diversify RET signaling, either by recruiting different downstream effectors or by changing the kinetics or efficacy of kinase activation (Tansey et al. 2000, Paratcha et al. 2001). Whether cis and trans signaling has significant differences in vivo is unresolved (Fleming et al. 2015). Different GDNF family members could activate similar downstream signaling pathways since all GFRAs bind to and activate the same tyrosine kinase and induce coordinated phosphorylation of the same four RET tyrosines (Tyr905, Tyr1015, Tyr1062, and Tyr1096) with similar kinetics (Coulpier et al. 2002). However the exact RET signaling pathways in different types of cells and neurons remain to be determined
The high affinity Interleukin-15 receptor is a heterotrimer of Interleukin-15 receptor subunit alpha (IL15RA), Interleukin-2 receptor subunit beta (IL2RB, CD122) and Cytokine receptor common subunit gamma (IL2RG, CD132). IL2RB and IL2RG are also components of the Interleukin-2 (IL2) receptor. Treatment of human T cells with Interleukin-15 (IL15) results in tyrosine phosphorylation of Tyrosine-protein kinase JAK1 (JAK1, Janus kinase 1) and Tyrosine-protein kinase JAK3 (JAK3, Janus kinase 3) (Johnston et al. 1995, Winthrop 2017). IL15 can signal by a process termed 'trans presentation', where IL15 bound by IL15 on one cell is trans-presented to IL2RB:IL2RG on another cell (Dubois et al. 2002) but can also participate in more 'traditional' cis signaling (Wu et al. 2008, Mishra et al. 2014) where all the three receptors are present on the same cell. \nStimulation of lymphocytes by IL15 release MAPK activation through GAB2/SHP2/SHC (GRB2-associated-binding protein 2/Tyrosine-protein phosphatase non-receptor type 11/SHC transforming protein 1 or 2) cascade activation (Gadina et al. 2000)
Phosphorylation of Shc at three tyrosine residues, 239, 240 (Gotoh et al. 1996) and 317 (Salcini et al. 1994) involves unidentified tyrosine kinases presumed to be part of the activated receptor complex. These phosphorylated tyrosines subsequently bind SH2 signaling proteins such as Grb2, Gab2 and SHIP that are involved in the regulation of different signaling pathways. Grb2 can associate with the guanosine diphosphate-guanosine triphosphate exchange factor Sos1, leading to Ras activation and regulation of cell proliferation. Downstream signals are mediated via the Raf-MEK-Erk pathway.Grb2 can also associate through Gab2 with PI3K and with SHIP.Figure reproduced from Gu, H. et al. 2000. Mol. Cell. Biol. 20(19):7109-7120Copyright American Society for Microbiology. All Rights Reserved
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, isothermal titration calorimetry, peptide array, pull down, tandem affinity purification, two hybrid array, two hybrid pooling approach, two hybrid prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, isothermal titration calorimetry, peptide array, pull down, tandem affinity purification, two hybrid array, two hybrid pooling approach, two hybrid prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, isothermal titration calorimetry, peptide array, pull down, tandem affinity purification, two hybrid array, two hybrid pooling approach, two hybrid prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association
Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-hybrid, anti bait coimmunoprecipitation, anti tag coimmunoprecipitation, isothermal titration calorimetry, peptide array, pull down, tandem affinity purification, two hybrid array, two hybrid pooling approach, two hybrid prey pooling approach, validated two hybrid, x-ray crystallography
association, direct interaction, physical, physical association