241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cell membrane Cytoplasm, cytoskeleton,microtubule organizing center, centrosome Cytoplasm, cytosolNote=Newly synthesized protein initially accumulates in the Golgiregion and traffics to the plasma membrane through the exocyticpathway
Function (UniProt annotation)
Non-receptor protein tyrosine kinase that is involved inthe regulation of cell growth and survival, apoptosis, cell-celladhesion, cytoskeleton remodeling, and differentiationStimulation by receptor tyrosine kinases (RTKs) including EGRF,PDGFR, CSF1R and FGFR leads to recruitment of YES1 to thephosphorylated receptor, and activation and phosphorylation ofdownstream substrates Upon EGFR activation, promotes thephosphorylation of PARD3 to favor epithelial tight junctionassembly Participates in the phosphorylation of specificjunctional components such as CTNND1 by stimulating the FYN andFER tyrosine kinases at cell-cell contacts Upon T-cellstimulation by CXCL12, phosphorylates collapsin response mediatorprotein 2/DPYSL2 and induces T-cell migration Participates inCD95L/FASLG signaling pathway and mediates AKT-mediated cellmigration Plays a role in cell cycle progression byphosphorylating the cyclin-dependent kinase 4/CDK4 thus regulatingthe G1 phase Also involved in G2/M progression and cytokinesis
Catalytic Activity (UniProt annotation)
ATP + a [protein]-L-tyrosine = ADP + a[protein]-L-tyrosine phosphate
Cell-cell adherens junctions (AJs), the most common type of intercellular adhesions, are important for maintaining tissue architecture and cell polarity and can limit cell movement and proliferation. At AJs, E-cadherin serves as an essential cell adhesion molecules (CAMs). The cytoplasmic tail binds beta-catenin, which in turn binds alpha-catenin. Alpha-catenin is associated with F-actin bundles directly and indirectly. The integrity of the cadherin-catenin complex is negatively regulated by phosphorylation of beta-catenin by receptor tyrosine kinases (RTKs) and cytoplasmic tyrosine kinases (Fer, Fyn, Yes, and Src), which leads to dissociation of the cadherin-catenin complex. Integrity of this complex is positively regulated by beta -catenin phosphorylation by casein kinase II, and dephosphorylation by protein tyrosine phosphatases. Changes in the phosphorylation state of beta-catenin affect cell-cell adhesion, cell migration and the level of signaling beta-catenin. Wnt signaling acts as a positive regulator of beta-catenin by inhibiting beta-catenin degradation, which stabilizes beta-catenin, and causes its accumulation. Cadherin may acts as a negative regulator of signaling beta-catenin as it binds beta-catenin at the cell surface and thereby sequesters it from the nucleus. Nectins also function as CAMs at AJs, but are more highly concentrated at AJs than E-cadherin. Nectins transduce signals through Cdc42 and Rac, which reorganize the actin cytoskeleton, regulate the formation of AJs, and strengthen cell-cell adhesion.
ERBB2, also known as HER2 or NEU, is a receptor tyrosine kinase (RTK) belonging to the EGFR family. ERBB2 possesses an extracellular domain that does not bind any known ligand, contrary to other EGFR family members, a single transmembrane domain, and an intracellular domain consisting of an active kinase and a C-tail with multiple tyrosine phosphorylation sites. Inactive ERBB2 is associated with a chaperone heat shock protein 90 (HSP90) and its co-chaperone CDC37 (Xu et al. 2001, Citri et al. 2004, Xu et al. 2005). In addition, ERBB2 is associated with ERBB2IP (also known as ERBIN or LAP2), a protein responsible for proper localization of ERBB2. In epithelial cells, ERBB2IP restricts expression of ERBB2 to basolateral plasma membrane regions (Borg et al. 2000).\nERBB2 becomes activated by forming a heterodimer with another ligand-activated EGFR family member, either EGFR, ERBB3 or ERBB4, which is accompanied by dissociation of chaperoning proteins HSP90 and CDC37 (Citri et al. 2004), as well as ERBB2IP (Borg et al. 2000) from ERBB2. ERBB2 heterodimers function to promote cell proliferation, cell survival and differentiation, depending on the cellular context. ERBB2 can also be activated by homodimerization when it is overexpressed, in cancer for example. \nIn cells expressing both ERBB2 and EGFR, EGF stimulation of EGFR leads to formation of both ERBB2:EGFR heterodimers (Wada et al. 1990, Karunagaran et al. 1996) and EGFR homodimers. Heterodimers of ERBB2 and EGFR trans-autophosphorylate on twelve tyrosine residues, six in the C-tail of EGFR and six in the C-tail of ERBB2 - Y1023, Y1139, Y1196, Y1221, Y1222 and Y1248 (Margolis et al. 1989, Hazan et al. 1990,Walton et al. 1990, Helin et al. 1991, Ricci et al. 1995, Pinkas-Kramarski 1996). Phosphorylated tyrosine residues in the C-tail of EGFR and ERBB2 serve as docking sites for downstream signaling molecules. Three key signaling pathways activated by ERBB2:EGFR heterodimers are RAF/MAP kinase cascade, PI3K-induced AKT signaling, and signaling by phospholipase C gamma (PLCG1). Downregulation of EGFR signaling is mediated by ubiquitin ligase CBL, and is shown under Signaling by EGFR.\nIn cells expressing ERBB2 and ERBB3, ERBB3 activated by neuregulin NRG1 or NRG2 binding (Tzahar et al. 1994) forms a heterodimer with ERBB2 (Pinkas-Kramarski et al. 1996, Citri et al. 2004). ERBB3 is the only EGFR family member with no kinase activity, and can only function in heterodimers, with ERBB2 being its preferred heterodimerization partner. After heterodimerization, ERBB2 phosphorylates ten tyrosine residues in the C-tail of ERBB3, Y1054, Y1197, Y1199, Y1222, Y1224, Y1260, Y1262, Y1276, Y1289 and Y1328 (Prigent et al. 1994, Pinkas-Kramarski et al. 1996, Vijapurkar et al. 2003, Li et al. 2007) that subsequently serve as docking sites for downstream signaling molecules, resulting in activation of PI3K-induced AKT signaling and RAF/MAP kinase cascade. Signaling by ERBB3 is downregulated by the action of RNF41 ubiquitin ligase, also known as NRDP1. \nIn cells expressing ERBB2 and ERBB4, ligand stimulated ERBB4 can either homodimerize or form heterodimers with ERBB2 (Li et al. 2007), resulting in trans-autophosphorylation of ERBB2 and ERBB4 on C-tail tyrosine residues that will subsequently serve as docking sites for downstream signaling molecules, leading to activation of RAF/MAP kinase cascade and, in the case of ERBB4 CYT1 isoforms, PI3K-induced AKT signaling (Hazan et al. 1990, Cohen et al. 1996, Li et al. 2007, Kaushansky et al. 2008). Signaling by ERBB4 is downregulated by the action of WWP1 and ITCH ubiquitin ligases, and is shown under Signaling by ERBB4
Stem cell factor (SCF) is a growth factor with membrane bound and soluble forms. It is expressed by fibroblasts and endothelial cells throughout the body, promoting proliferation, migration, survival and differentiation of hematopoetic progenitors, melanocytes and germ cells.(Linnekin 1999, Ronnstrand 2004, Lennartsson and Ronnstrand 2006). The receptor for SCF is KIT, a tyrosine kinase receptor (RTK) closely related to the receptors for platelet derived growth factor receptor, colony stimulating factor 1 (Linnekin 1999) and Flt3 (Rosnet et al. 1991). Four isoforms of c-Kit have been identified in humans. Alternative splicing results in isoforms of KIT differing in the presence or absence of four residues (GNNK) in the extracellular region. This occurs due to the use of an alternate 5' splice donor site. These GNNK+ and GNNK- variants are co-expressed in most tissues; the GNNK- form predominates and was more strongly tyrosine-phosphorylated and more rapidly internalized (Ronnstrand 2004). There are also splice variants that arise from alternative usage of splice acceptor site resulting in the presence or absence of a serine residue (Crosier et al., 1993). Finally, there is an alternative shorter transcript of KIT expressed in postmeiotic germ cells in the testis which encodes a truncated KIT consisting only of the second part of the kinase domain and thus lackig the extracellular and transmembrane domains as well as the first part of the kinase domain (Rossi et al. 1991). Binding of SCF homodimers to KIT results in KIT homodimerization followed by activation of its intrinsic tyrosine kinase activity. KIT stimulation activates a wide array of signalling pathways including MAPK, PI3K and JAK/STAT (Reber et al. 2006, Ronnstrand 2004). Defects of KIT in humans are associated with different genetic diseases and also in several types of cancers like mast cell leukaemia, germ cell tumours, certain subtypes of malignant melanoma and gastrointestinal tumours
Cross-linking of FCGRs with IgG coated immune complexes results in tyrosine phosphorylation of the immuno tyrosine activation motif (ITAMs) of the rececptor by membrane-bound tyrosine kinases of the SRC family. The phosphorylated ITAM tyrosines serve as docking sites for Src homology 2 (SH2) domain-containing SYK kinase. Recruitment and activation of SYK is critical for FCGR-mediated signaling in phagocytosis, but the exact role of SYK in this process is unclear. Activated SYK then transmits downstream signals leading to actin polymerization and particle internalization
PECAM-1/CD31 is a member of the immunoglobulin superfamily (IgSF) and has been implicated to mediate the adhesion and trans-endothelial migration of T-lymphocytes into the vascular wall, T cell activation and angiogenesis. It has six Ig homology domains within its extracellularly and an ITIM motif within its cytoplasmic region. PECAM-1 mediates cellular interactions by both homophilic and heterophilic interactions. The cytoplasmic domain of PECAM-1 contains tyrosine residues which serves as docking sites for recruitment of cytosolic signaling molecules. Under conditions of platelet activation, PECAM-1 is phosphorylated by Src kinase members. The tyrosine residues 663 and 686 are required for recruitment of the SH2 domain containing PTPs
During the development process cell migration and adhesion are the main forces involved in morphing the cells into critical anatomical structures. The ability of a cell to migrate to its correct destination depends heavily on signaling at the cell membrane. Erythropoietin producing hepatocellular carcinoma (EPH) receptors and their ligands, the ephrins (EPH receptors interacting proteins, EFNs), orchestrates the precise control necessary to guide a cell to its destination. They are expressed in all tissues of a developing embryo and are involved in multiple developmental processes such as axon guidance, cardiovascular and skeletal development and tissue patterning. In addition, EPH receptors and EFNs are expressed in developing and mature synapses in the nervous system, where they may have a role in regulating synaptic plasticity and long-term potentiation. Activation of EPHB receptors in neurons induces the rapid formation and enlargement of dendritic spines, as well as rapid synapse maturation (Dalva et al. 2007). On the other hand, EPHA4 activation leads to dendritic spine elimination (Murai et al. 2003, Fu et al. 2007).EPH receptors are the largest known family of receptor tyrosine kinases (RTKs), with fourteen total receptors divided into either A- or B-subclasses: EPHA (1-8 and 10) and EPHB (1-4 and 6). EPH receptors can have overlapping functions, and loss of one receptor can be partially compensated for by another EPH receptor that has similar expression pattern and ligand-binding specificities. EPH receptors have an N-terminal extracellular domain through which they bind to ephrin ligands, a short transmembrane domain, and an intracellular cytoplasmic signaling structure containing a canonical tyrosine kinase catalytic domain as well as other protein interaction sites. Ephrins are also sub-divided into an A-subclass (A1-A5), which are tethered to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor, and a B-subclass (B1-B3), members of which have a transmembrane domain and a short, highly conserved cytoplasmic tail lacking endogenous catalytic activity. The interaction between EPH receptors and its ligands requires cell-cell interaction since both molecules are membrane-bound. Close contact between EPH receptors and EFNs is required for signaling to occur. EPH/EFN-initiated signaling occurs bi-directionally into either EPH- or EFN-expressing cells or axons. Signaling into the EPH receptor-expressing cell is referred as the forward signal and signaling into the EFN-expressing cell, the reverse signal. (Dalva et al. 2000, Grunwald et al. 2004, Davy & Robbins 2000, Cowan et al
In naive T cells, CD28 costimulation enhances cell cycle entry, potently stimulates expression of both the mitogenic lymphokine interleukin-2 (IL-2) and its receptor, and stimulates the activation of an antiapoptotic program. CD28 engages with one or both members of the B7 receptor family, B7.1 and B7.2. Upon ligand binding the tyrosines and proline-rich motifs present in the cytoplasmic tail of CD28 are phosphorylated by Lck or Fyn. Upon phosphorylation CD28 recruits and induces phosphorylation and activation of a more restricted set of intracellular signaling components that, together with those mobilized by the TCR, contribute to convert membrane-based biochemical and biophysical changes into gene activation events. Proteins like PI3K, Vav-1, Tec and Itk kinases, AKT, and the Dok-1 adaptor have been identified as elements of the CD28 signaling pathway by biochemical or genetic approaches or both
CTLA4 is one of the best studied inhibitory receptors of the CD28 superfamily. CTLA4 inhibits Tcell activation by reducing IL2 production and IL2 expression, and by arresting T cells at the G1 phase of the cell cycle. CTLA-4 expressed by a T cell subpopulation exerts a dominant control on the proliferation of other T cells, which limits autoreactivity. CTLA4 also blocks CD28 signals by competing for the ligands B71 and B72 in the limited space between T cells and antigenpresenting cells. Though the mechanism is obscure, CTLA4 may also propagate inhibitory signals that actively counter those produced by CD28. CTLA4 can also function in a ligand-independent manner.?CTLA-4 regulates the activation of pathogenic T cells by directly modulating T cell receptor signaling (i.e. TCR-zeta chain phosphorylation) as well as downstream biochemical signals (i.e. ERK activation). The cytoplasmic region of CTLA4 contains a tyrosine motif YVKM and a proline rich region. After TCR stimulation, it undergoes tyrosine phosphorylation by src kinases, inducing surface retention
Multiple EPHB receptors contribute directly to dendritic spine development and morphogenesis. These are more broadly involved in post-synaptic development through activation of focal adhesion kinase (FAK) and Rho family GTPases and their GEFs. Dendritic spine morphogenesis is a vital part of the process of synapse formation and maturation during CNS development. Dendritic spine morphogenesis is characterized by filopodia shortening followed by the formation of mature mushroom-shaped spines (Moeller et al. 2006). EPHBs control neuronal morphology and motility by modulation of the actin cytoskeleton. EPHBs control dendritic filopodia motility, enabling synapse formation. EPHBs exert these effects through interacting with the guanine exchange factors (GEFs) such as intersectin and kalirin. The intersectin-CDC42-WASP-actin and kalirin-RAC-PAK-actin pathways have been proposed to regulate the EPHB receptor mediated morphogenesis and maturation of dendritic spines in cultured hippocampal and cortical neurons (Irie & Yamaguchi 2002, Penzes et al. 2003). EPHBs are also involved in the regulation of dendritic spine morphology through FAK which activates the RHOA-ROCK-LIMK-1 pathway to suppress cofilin activity and inhibit cofilin-mediated dendritic spine remodeling (Shi et al. 2009)
EPH/Ephrin signaling is coupled to Rho family GTPases such as Rac, Rho and Cdc42 that connect bidirectional receptor-ligand interactions to changes in the actin cytoskeleton (Noren & Pasquale 2004, Groeger & Nobes 2007). RHOA regulates actin dynamics and is involved in EPHA-induced growth cone collapse. This is mediated by ephexins. Ephexin, a guanine nucleotide exchange factor for Rho GTPases, interacts with the EPHA kinase domain and its subsequent activation differentially affects Rho GTPases, such that RHOA is activated, whereas Cdc42 and Rac1 are inhibited. Activation of RHOA, and inhibition of Cdc42 and Rac, shifts actin cytoskeleton to increased contraction and reduced expansion leading to growth-cone collapse (Shamah et al. 2001, Sahin et al. 2005). The activation of EPH receptors in growing neurons typically, but not always, leads to a growth cone collapse response and retraction from an ephrin-expressing substrate (Poliakov et al. 2004, Pasquale 2005). EPHA-mediated repulsive responses prevent axons from growing into regions of excessive ephrin-A concentration, such as the posterior end of the superior colliculus (Pasquale 2005)
Despite high-affinity multimeric interaction between EPHs and ephrins (EFNs), the cellular response to EPH-EFN engagement is usually repulsion between the two cells and signal termination. These repulsive responses induce an EPH receptor-expressing cell to retract from an ephrin-expressing cell after establishing initial contact. The repulsive responses mediated by EPH receptors in the growth cone at the leading edge of extending axons and in axonal collateral branches contribute to the formation of selective neuronal connections. It is unclear how high affinity trans-cellular interactions between EPHs and ephrins are broken to convert adhesion into repulsion. Two possible mechanisms have been proposed for the repulsion of EPH-EFN bearing cells: the first one involves regulated cleavage of ephrin ligands or EPH receptors by transmembrane proteases following cell-cell contact, while the second one is rapid endocytosis of whole EPH:EFN complexes during the retraction of the interacting cells or neuronal growth cones (Egea & Klein 2007, Janes et al. 2005). RAC also plays an essential role during growth cone collapse by promoting actin polymerization that drives membrane internalization by endocytosis (Marston et al. 2003)
The complex of RUNX2 and CBFB regulates transcription of genes involved in differentiation of osteoblasts.RUNX2 stimulates transcription of the BGLAP gene, encoding osteocalcin (Ducy and Karsenty 1995, Ducy et al. 1997). Binding of the RUNX2:CBFB complex to the BGLAP gene promoter is increased when RUNX2 is phosphorylated on serine residue S451 (Wee et al. 2002). Osteocalcin, a bone-derived hormone, is one of the most abundant non-collagenous proteins of the bone extracellular matrix (reviewed in Karsenty and Olson 2016). Association of the activated androgen receptor (AR) with RUNX2 prevents binding of RUNX2 to the BGLAP promoter (Baniwal et al. 2009). When YAP1, tyrosine phosphorylated by SRC and/or YES1, binds to RUNX2 at the BGLAP gene promoter, transcription of the BGLAP gene is inhibited (Zaidi et al. 2004). Signaling by SRC is known to inhibit osteoblast differentiation (Marzia et al. 2000).Simultaneous binding of RUNX2 and SP7 (Osterix, also known as OSX) to adjacent RUNX2 and SP7 binding sites, respectively, in the UCMA promoter, synergistically activates UCMA transcription. UCMA stimulates osteoblast differentiation and formation of mineralized nodules (Lee et al. 2015).The SCF(SKP2) E3 ubiquitin ligase complex inhibits differentiation of osteoblasts by polyubiquitinating RUNX2 and targeting it for proteasome-mediated degradation (Thacker et al. 2016). This process is inhibited by glucose uptake in osteoblasts (Wei et al. 2015)
Cbl is an E3 ubiquitin-protein ligase that negatively regulates signaling pathways by targeting proteins for ubiquitination and proteasomal degradation (Rao et al. 2002). Cbl negatively regulates PI3K via this mechanism (Dufour et al. 2008). The binding of Cbl to the p85 subunit of PI3K is mediated at least in part by tyrosine phosphorylation at Y731 (Dufour et al. 2008). Fyn and the related kinases Hck and Lyn are known to be associated with Cbl (Anderson et al. 1997, Hunter et al. 1999). Fyn is proven capable of Cbl Y731 phosphorylation (Hunter et al. 1999).The association of Fyn and Cbl has been described as constitutive (Hunter et al. 1999). CBL further associates with the p85 subunit of PI3K (Hartley et al. 1995, Anderson et al. 1997, Hunter et al. 1997), this also described as constitutive and mediated by the SH3 domain of p85. Binding of the SH2 domain of p85 to a specific phosphorylation site in Cbl is postulated to explain the the increase in Cbl/p85 association seen in activated cells (Panchamoorthy et al 1996) which negatively regulates PI3K activity (Fang et al. 2001). The negative effect of increased Cbl-PI3K interaction is mediated by Y731 of Cbl. Cbl binding increases PI3K ubiquitination and proteasome degradation (Dufour et al. 2008).Cbl is constitutively associated with Grb in resting hematopoietic cells (Anderson et al. 1997, Odai et al. 1995, Park et al. 1998, Panchamoorthy et al. 1996). Both the SH2 and SH3 domains of Grb2 are involved. Cbl has 2 distinct C-terminal domains, proximal and distal. The proximal domain binds Grb2 in resting and stimulated cells, and in stimulated cells also binds Shc. The distal domain binds the adaptor protein CRKL. Tyrosine phosphorylation of Cbl in response to IL-3 releases the SH3 domain of Grb2 which then is free to bind other molecules (Park et al. 1998). Cbl is tyrosine phosphorylated in response to many cytokines including IL-3, IL-2 (Gesbert et al. 1998) and IL-4 (Ueno et al. 1998)