241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm Note=Colocalizedwith TRPC7 in the plasma membrane
Function (UniProt annotation)
Serine/threonine protein kinase that acts as keymediator of the nitric oxide (NO)/cGMP signaling pathway GMPbinding activates PRKG1, which phosphorylates serines andthreonines on many cellular proteins Numerous protein targets forPRKG1 phosphorylation are implicated in modulating cellularcalcium, but the contribution of each of these targets may varysubstantially among cell types Proteins that are phosphorylatedby PRKG1 regulate platelet activation and adhesion, smooth musclecontraction, cardiac function, gene expression, feedback of theNO-signaling pathway, and other processes involved in severalaspects of the CNS like axon guidance, hippocampal and cerebellarlearning, circadian rhythm and nociception Smooth musclerelaxation is mediated through lowering of intracellular freecalcium, by desensitization of contractile proteins to calcium,and by decrease in the contractile state of smooth muscle or inplatelet activation Regulates intracellular calcium levels viaseveral pathways: phosphorylates MRVI1/IRAG and inhibits IP3-induced Ca(2+) release from intracellular stores, phosphorylationof KCNMA1 (BKCa) channels decreases intracellular Ca(2+) levels,which leads to increased opening of this channel PRKG1phosphorylates the canonical transient receptor potential channel(TRPC) family which inactivates the associated inward calciumcurrent Another mode of action of NO/cGMP/PKGI signaling involvesPKGI-mediated inactivation of the Ras homolog gene family member A(RhoA) Phosphorylation of RHOA by PRKG1 blocks the action of thisprotein in myriad processes: regulation of RHOA translocation;decreasing contraction; controlling vesicle trafficking, reductionof myosin light chain phosphorylation resulting in vasorelaxationActivation of PRKG1 by NO signaling alters also gene expression ina number of tissues In smooth muscle cells, increased cGMP andPRKG1 activity influence expression of smooth muscle-specificcontractile proteins, levels of proteins in the NO/cGMP signalingpathway, down-regulation of the matrix proteins osteopontin andthrombospondin-1 to limit smooth muscle cell migration andphenotype Regulates vasodilator-stimulated phosphoprotein (VASP)functions in platelets and smooth muscle
Cyclic GMP (cGMP) is the intracellular second messenger that mediates the action of nitric oxide (NO) and natriuretic peptides (NPs), regulating a broad array of physiologic processes. The elevated intracellular cGMP level exerts its physiological action through two forms of cGMP-dependent protein kinase (PKG), cGMP-regulated phosphodiesterases (PDE2, PDE3) and cGMP-gated cation channels, among which PKGs might be the primary mediator. PKG1 isoform-specific activation of established substrates leads to reduction of cytosolic calcium concentration and/or decrease in the sensitivity of myofilaments to Ca2+ (Ca2+-desensitization), resulting in smooth muscle relaxation. In cardiac myocyte, PKG directly phosphorylates a member of the transient potential receptor canonical channel family, TRPC6, suppressing this nonselective ion channel's Ca2+ conductance, G-alpha-q agonist-induced NFAT activation, and myocyte hypertrophic responses. PKG also opens mitochondrial ATP-sensitive K+ (mitoKATP) channels and subsequent release of ROS triggers cardioprotection.
The vascular smooth muscle cell (VSMC) is a highly specialized cell whose principal function is contraction. On contraction, VSMCs shorten, thereby decreasing the diameter of a blood vessel to regulate the blood flow and pressure. The principal mechanisms that regulate the contractile state of VSMCs are changes in cytosolic Ca2+ concentration ([Ca2+]c). In response to vasoconstrictor stimuli, Ca2+ is mobilized from intracellular stores and/or the extracellular space to increase [Ca2+]c in VSMCs. The increase in [Ca2+]c, in turn, activates the Ca2+-CaM-MLCK pathway and stimulates MLC20 phosphorylation, leading to myosin-actin interactions and, hence, the development of contractile force. The sensitivity of contractile myofilaments or MLC20 phosphorylation to Ca2+ can be secondarily modulated by other signaling pathways. During receptor stimulation, the contractile force is greatly enhanced by the inhibition of myosin phosphatase. Rho/Rho kinase, PKC, and arachidonic acid have been proposed to play a pivotal role in this enhancement. The signaling events that mediate relaxation include the removal of a contractile agonist (passive relaxation) and activation of cyclic nucleotide-dependent signaling pathways in the continued presence of a contractile agonist (active relaxation). Active relaxation occurs through the inhibition of both Ca2+ mobilization and myofilament Ca2+ sensitivity in VSMCs.
Gap junctions contain intercellular channels that allow direct communication between the cytosolic compartments of adjacent cells. Each gap junction channel is formed by docking of two 'hemichannels', each containing six connexins, contributed by each neighboring cell. These channels permit the direct transfer of small molecules including ions, amino acids, nucleotides, second messengers and other metabolites between adjacent cells. Gap junctional communication is essential for many physiological events, including embryonic development, electrical coupling, metabolic transport, apoptosis, and tissue homeostasis. Communication through Gap Junction is sensitive to a variety of stimuli, including changes in the level of intracellular Ca2+, pH, transjunctional applied voltage and phosphorylation/dephosphorylation processes. This figure represents the possible activation routes of different protein kinases involved in Cx43 and Cx36 phosphorylation.
Platelets play a key and beneficial role for primary hemostasis on the disruption of the integrity of vessel wall. Platelet adhesion and activation at sites of vascular wall injury is initiated by adhesion to adhesive macromolecules, such as collagen and von Willebrand factor (vWF), or by soluble platelet agonists, such as ADP, thrombin, and thromboxane A2. Different receptors are stimulated by various agonists, almost converging in increasing intracellular Ca2+ concentration that stimulate platelet shape change and granule secretion and ultimately induce the inside-outsignaling process leading to activation of the ligand-binding function of integrin alpha IIb beta 3. Binding of alpha IIb beta 3 to its ligands, mainly fibrinogen, mediates platelet adhesion and aggregation and triggers outside-insignaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction.
Circadian entrainment is a fundamental property by which the period of the internal biological clock is entrained by recurring exogenous signals, such that the organism's endocrine and behavioral rhythms are synchronized to environmental cues. In mammals, a master clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and may synchronize circadian oscillators in peripheral tissues. Light signal is the dominant synchronizer for master SCN clock. Downstream from the retina, glutamate and PACAP are released and trigger the activation of signal transduction cascades, including CamKII and nNOS activity, cAMP- and cGMP-dependent protein kinases, and mitogen-activated protein kinase (MAPK). Of non-photic entrainment, important phase shifting capabilities have been found for melatonin, which inhibits light-induced phase shifts through inhibition of adenylate cyclase (AC). Multiple entrainment pathways converge into CREB regulation. In turn, phosphorylated CREB activates clock gene expression.
Thermogenesis is essential for warm-blooded animals, ensuring normal cellular and physiological function under conditions of environmental challenge. Thermogenesis in brown and beige adipose tissue is mainly controlled by norepinephrine, which is released from sympathetic nervous system in response to cold or dietary stimuli. The mitochondrial uncoupling protein 1 (UCP1) is responsible for the process whereby chemical energy is converted into heat in these adipocytes. Activation of these adipocytes leads to an increase in calorie consumption and is expected to improve overweight conditions, providing a potential strategy for treating obesity and its related metabolic disorders.
Cerebellar long-term depression (LTD), thought to be a molecular and cellular basis for cerebellar learning, is a process involving a decrease in the synaptic strength between parallel fiber (PF) and Purkinje cells (PCs) induced by the conjunctive activation of PFs and climbing fiber (CF). Multiple signal transduction pathways have been shown to be involved in this process. Activation of PFs terminating on spines in dendritic branchlets leads to glutamate release and activation of both AMPA and mGluRs. Activation of CFs, which make multiple synaptic contacts on proximal dendrites, also via AMPA receptors, opens voltage-gated calcium channels (VGCCs) and causes a generalized influx of calcium. These cellular signals, generated from two different synaptic origins, trigger a cascade of events culminating in a phosphorylation-dependent, long-term reduction in AMPA receptor sensitivity at the PF-PC synapse. This may take place either through receptor internalization and/or through receptor desensitization.
Within the compact cilia of the olfactory receptor neurons (ORNs) a cascade of enzymatic activity transduces the binding of an odorant molecule to a receptor into an electrical signal that can be transmitted to the brain. Odorant molecules bind to a receptor protein (R) coupled to an olfactory specific Gs-protein (G) and activate a type III adenylyl cyclase (AC), increasing intracellular cAMP levels. cAMP targets an olfactory-specific cyclic-nucleotide gated ion channel (CNG), allowing cations, particularly Na and Ca, to flow down their electrochemical gradients into the cell, depolarizing the ORN. Furthermore, the Ca entering the cell is able to activate a Ca-activated Cl channel, which would allow Cl to flow out of the cell, thus further increasing the depolarization. Elevated intracellular Ca causes adaptation by at least two different molecular steps: inhibition of the activity of adenylyl cyclase via CAMKII-dependent phosphorylation and down-regulation of the affinity of the CNG channel to cAMP.
Lipolysis in adipocytes, the hydrolysis of triacylglycerol (TAG) to release fatty acids (FAs) and glycerol for use by other organs as energy substrates, is a unique function of white adipose tissue. Lipolysis is under tight hormonal control. During fasting, catecholamines, by binding to Gs-coupled-adrenergic receptors (-AR), activate adenylate cyclase (AC) to increase cAMP and activate protein kinase A (PKA). PKA phosphorylates target protein such as hormone-sensitive lipase (HSL) and perilipin 1 (PLIN). PLIN phosphorylation is a key event in the sequential activation of TAG hydrolysis involving adipose triglyceride lipase (ATGL), HSL, and monoglyceride lipase (MGL). During the fed state, insulin, through activation of phosphodiesterase-3B (PDE-3B), inhibits catecholamine-induced lipolysis via the degradation of cAMP.
Saliva has manifold functions in maintaining the integrity of the oral tissues, in protecting teeth from caries, in the tasting and ingestion of food, in speech and in the tolerance of tenures, for example. Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. There are two secretory pathways: protein exocytosis and fluid secretion. Sympathetic stimulation leads to the activation of adenylate cyclase and accumulation of intracellular cAMP. The elevation of cAMP causes the secretion of proteins such as amylase and mucin. In contrast, parasympathetic stimulation activates phospholipase C and causes the elevation of intracellular Ca2+, which leads to fluid secretion; that is, water and ion transport. Ca2+ also induces amylase secretion, but the amount is smaller than that induced by cAMP.
Rap1 (Ras-proximate-1) is a small G protein in the Ras superfamily. Like all G proteins, Rap1 is activated when bound GDP is exchanged for GTP. Rap1 is targeted to lipid membranes by the covalent attachment of lipid moieties to its carboxyl terminus. Movement of Rap1 from endosomal membranes to the plasma membrane upon activation has been reported in several cell types including Jurkat T cells and megakaryocytes. On activation, Rap1 undergoes conformational changes that facilitate recruitment of a variety of effectors, triggering it's participation in integrin signaling, ERK activation, and others
A number of so called non-canonical WNT ligands have been shown to promote intracellular calcium release upon FZD binding. This beta-catenin-independent WNT pathway acts through heterotrimeric G proteins and promotes calcium release through phophoinositol signaling and activation of phosphodiesterase (PDE). Downstream effectors include the calcium/calmodulin-dependent kinase II (CaMK2) and PKC (reviewed in De, 2011). The WNT Ca2+ pathway is important in dorsoventral polarity, convergent extension and organ formation in vertebrates and also has roles in negatively regulating 'canonical' beta-catenin-dependent transcription. Non-canonical WNT Ca2+ signaling is also implicated in inflammatory response and cancer (reviewed in Kohn and Moon, 2005; Sugimura and Li, 2010)
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by guanylate cyclases. cGMP has effects on phosphodiesterases (PDE), ion-gated channels, and the cGMP-dependent protein kinases (cGK, Protein Kinase G or PKG). It is involved in regulation of several physiological functions including vasodilation, platelet aggregation and neurotransmission. Elevation of intracellular cGMP activates PKG (Haslam et al. 1999) which regulates several intracellular molecules and pathways including the vasodilator-stimulated phosphoprotein (VASP) (Halbrugge et al. 1990) and the ERK pathway (Hood and Granger 1998, Li et al. 2001). cGMP mediates nitric oxide (NO)-induced vascular smooth muscle relaxation (Furchgott and Vanhoutte 1989). Phosphodiesterase 5 (PDE5) hydrolyzes cGMP; the PDE5 inhibitor sildenafil (Viagra) increases intracellular cGMP and thereby can be used as a treatment for erectile dysfunction (Corbin and Francis 1999). The role of the cGMP and PKG in platelet activation was controversial as increases in platelet cGMP levels were observed in response to both platelet agonists (thrombin, ADP or collagen) and inhibitors (NO donors such as sodium nitroprusside), but it is currently accepted that PKG inhibits platelet activation (Haslam et al. 1999). Consistent with this, nitric oxide (NO) donors that inhibit platelet activation enhance intracellular cGMP (Haslam et al. 1999). cGMP also plays an important stimulatory role in GPIb-IX-mediated platelet activation. Platelet responses to cGMP have been proposed to be biphasic, consisting of an early stimulatory response that promotes platelet activation followed by a delayed platelet inhibition that serves to limit the size of platelet aggregates (Li et al 2003)