241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Cytoplasm Nucleus Cell projection,lamellipodium Note=Predominantlyfound in the cytoplasm Localizes in the lamellipodium in aCDC42BPA, CDC42BPB and FAM89B/LRAP25-dependent manner
Function (UniProt annotation)
Serine/threonine-protein kinase that plays an essentialrole in the regulation of actin filament dynamics Acts downstreamof several Rho family GTPase signal transduction pathwaysActivated by upstream kinases including ROCK1, PAK1 and PAK4,which phosphorylate LIMK1 on a threonine residue located in itsactivation loop LIMK1 subsequently phosphorylates and inactivatesthe actin binding/depolymerizing factors cofilin-1/CFL1, cofilin-2/CFL2 and destrin/DSTN, thereby preventing the cleavage offilamentous actin (F-actin), and stabilizing the actincytoskeleton In this way LIMK1 regulates several actin-dependentbiological processes including cell motility, cell cycleprogression, and differentiation Phosphorylates TPPP on serineresidues, thereby promoting microtubule disassembly Stimulatesaxonal outgrowth and may be involved in brain development Isoform3 has a dominant negative effect on actin cytoskeletal changesRequired for atypical chemokine receptor ACKR2-inducedphosphorylation of cofilin (CFL1)
Axon guidance represents a key stage in the formation of neuronal network. Axons are guided by a variety of guidance factors, such as netrins, ephrins, Slits, and semaphorins. These guidance cues are read by growth cone receptors, and signal transduction pathways downstream of these receptors converge onto the Rho GTPases to elicit changes in cytoskeletal organization that determine which way the growth cone will turn.
Phagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes.
Human immunodeficiency virus type 1 (HIV-1) , the causative agent of AIDS (acquired immunodeficiency syndrome), is a lentivirus belonging to the Retroviridae family. The primary cell surface receptor for HIV-1, the CD4 protein, and the co-receptor for HIV-1, either CCR5 or CXCR4, are found on macrophages and T lymphocytes. At the earliest step, sequential binding of virus envelope (Env) glycoprotein gp120 to CD4 and the co-receptor CCR5 or CXCR4 facilitates HIV-1 entry and has the potential to trigger critical signaling that may favor viral replication. At advanced stages of the disease, HIV-1 infection results in dramatic induction of T-cell (CD4+ T and CD8+ T cell) apoptosis both in infected and uninfected bystander T cells, a hallmark of HIV-1 pathogenesis. On the contrary, macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time.
The actin cytoskeleton is fundamental for phagocytosis and members of the Rho family GTPases RAC and CDC42 are involved in actin cytoskeletal regulation leading to pseudopod extension. Active RAC and CDC42 exert their action through the members of WASP family proteins (WASP/N-WASP/WAVE) and ARP2/3 complex. Actin filaments move from the bottom toward the top of the phagocytic cup during pseudopod extension
Multiple EPHB receptors contribute directly to dendritic spine development and morphogenesis. These are more broadly involved in post-synaptic development through activation of focal adhesion kinase (FAK) and Rho family GTPases and their GEFs. Dendritic spine morphogenesis is a vital part of the process of synapse formation and maturation during CNS development. Dendritic spine morphogenesis is characterized by filopodia shortening followed by the formation of mature mushroom-shaped spines (Moeller et al. 2006). EPHBs control neuronal morphology and motility by modulation of the actin cytoskeleton. EPHBs control dendritic filopodia motility, enabling synapse formation. EPHBs exert these effects through interacting with the guanine exchange factors (GEFs) such as intersectin and kalirin. The intersectin-CDC42-WASP-actin and kalirin-RAC-PAK-actin pathways have been proposed to regulate the EPHB receptor mediated morphogenesis and maturation of dendritic spines in cultured hippocampal and cortical neurons (Irie & Yamaguchi 2002, Penzes et al. 2003). EPHBs are also involved in the regulation of dendritic spine morphology through FAK which activates the RHOA-ROCK-LIMK-1 pathway to suppress cofilin activity and inhibit cofilin-mediated dendritic spine remodeling (Shi et al. 2009)
Sema4D-mediated attraction of endothelial cells requires Rho, but not R-Ras, signaling. Sema4D-mediated plexinB1 activation activates Rho and its downstream effector ROCK. ROCK then phosphorylates MLC to induce actomyosin stress fiber contraction and to direct the assembly of focal adhesion complexes and integrin-mediated adhesion
RHO associated, coiled-coil containing protein kinases ROCK1 and ROCK2 consist of a serine/threonine kinase domain, a coiled-coil region, a RHO-binding domain and a plekstrin homology (PH) domain interspersed with a cysteine-rich region. The PH domain inhibits the kinase activity of ROCKs by an intramolecular fold. ROCKs are activated by binding of the GTP-bound RHO GTPases RHOA, RHOB and RHOC to the RHO binding domain of ROCKs (Ishizaki et al. 1996, Leung et al. 1996), which disrupts the autoinhibitory fold. Once activated, ROCK1 and ROCK2 phosphorylate target proteins, many of which are involved in the stabilization of actin filaments and generation of actin-myosin contractile force. ROCKs phosphorylate LIM kinases LIMK1 and LIMK2, enabling LIMKs to phosphorylate cofilin, an actin depolymerizing factor, and thereby regulate the reorganization of the actin cytoskeleton (Ohashi et al. 2000, Sumi et al. 2001). ROCKs phosphorylate MRLC (myosin regulatory light chain), which stimulates the activity of non-muscle myosin II (NMM2), an actin-based motor protein involved in cell migration, polarity formation and cytokinesis (Amano et al. 1996, Riento and Ridley 2003, Watanabe et al. 2007, Amano et al. 2010). ROCKs also phosphorylate the myosin phosphatase targeting subunit (MYPT1) of MLC phosphatase, inhibiting the phosphatase activity and preventing dephosphorylation of MRLC. This pathway acts synergistically with phosphorylation of MRLC by ROCKs towards stimulation of non-muscle myosin II activity (Kimura et al. 1996, Amano et al. 2010)
The PAKs (p21-activated kinases) are a family of serine/threonine kinases mainly implicated in cytoskeletal rearrangements. All PAKs share a conserved catalytic domain located at the carboxyl terminus and a highly conserved motif in the amino terminus known as p21-binding domain (PBD) or Cdc42/Rac interactive binding (CRIB) domain. There are six mammalian PAKs that can be divided into two classes: class I (or conventional) PAKs (PAK1-3) and class II PAKs (PAK4-6). Conventional PAKs are important regulators of cytoskeletal dynamics and cell motility and are additionally implicated in transcription through MAPK (mitogen-activated protein kinase) cascades, death and survival signaling and cell cycle progression (Chan and Manser 2012).
PAK1, PAK2 and PAK3 are direct effectors of RAC1 and CDC42 GTPases. RAC1 and CDC42 bind to the CRIB domain. This binding induces a conformational change that disrupts inactive PAK homodimers and relieves autoinhibition of the catalytic carboxyl terminal domain (Manser et al. 1994, Manser et al. 1995, Zhang et al. 1998, Lei et al. 2000, Parrini et al. 2002; reviewed by Daniels and Bokoch 1999, Szczepanowska 2009). Autophosphorylation of a conserved threonine residue in the catalytic domain of PAKs (T423 in PAK1, T402 in PAK2 and T436 in PAK3) is necessary for the kinase activity of PAK1, PAK2 and PAK3. Autophosphorylation of PAK1 serine residue S144, PAK2 serine residue S141, and PAK3 serine residue S154 disrupts association of PAKs with RAC1 or CDC42 and enhances kinase activity (Lei et al. 2000, Chong et al. 2001, Parrini et al. 2002, Jung and Traugh 2005, Wang et al. 2011). LIMK1 is one of the downstream targets of PAK1 and is activated through PAK1-mediated phosphorylation of the threonine residue T508 within its activation loop (Edwards et al. 1999). Further targets are the myosin regulatory light chain (MRLC), myosin light chain kinase (MLCK), filamin, cortactin, p41Arc (a subunit of the Arp2/3 complex), caldesmon, paxillin and RhoGDI, to mention a few (Szczepanowska 2009).
Class II PAKs also have a CRIB domain, but lack a defined autoinhibitory domain and proline-rich regions. They do not require GTPases for their kinase activity, but their interaction with RAC or CDC42 affects their subcellular localization. Only conventional PAKs will be annotated here