241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
G-protein coupled receptor for glutamate Ligand bindingcauses a conformation change that triggers signaling via guaninenucleotide-binding proteins (G proteins) and modulates theactivity of down-stream effectors Signaling inhibits adenylatecyclase activity
Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). The PLD-produced PA activates signaling proteins and acts as a node within the membrane to which signaling proteins translocate. Several signaling proteins, including Raf-1 and mTOR, directly bind PA to mediate translocation or activation, respectively.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system(CNS). Glutamate is packaged into synaptic vesicles in the presynaptic terminal. Once released into the synaptic cleft, glutamate acts on postsynaptic ionotropic glutamate receptors (iGluRs) to mediate fast excitatory synaptic transmission. Glutamate can also act on metabotropic glutamate receptors (mGluRs) and exert a variety of modulatory effects through their coupling to G proteins and the subsequent recruitment of second messenger systems. Presynaptically localized Group II and Group III mGluRs are thought to represent the classical inhibitory autoreceptor mechanism that suppresses excess glutamate release. After its action on these receptors, glutamate can be removed from the synaptic cleft by EAATs located either on the presynaptic terminal, neighboring glial cells, or the postsynaptic neuron. In glia, glutamate is converted to glutamine, which is then transported back to the presynaptic terminal and converted back to glutamate.
Drug addiction is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behavior persists despite serious negative consequences.There is strong evidence that the dopaminergic system that projects from the ventral tegmental area (VTA) of the midbrain to the nucleus accumbens (NAc), and to other forebrain sites, is the major substrate of reward and reinforcement for both natural rewards and addictive drugs. Cocaine binds strongly to the dopamine-reuptake transporter, preventing the reuptake of dopamine into the nerve terminal. Because of this blocking effect, dopamine remains at high concentrations in the synapse and continues to affect adjacent neurons, producing the characteristic cocaine high.Activated D1 receptor activates the PKA signaling pathway, and this pathway plays a critical role in mediating the behavioral responses to cocaine administration. Cocaine-induced neuroadaptations, including dopamine depletion, may underlie craving and hedonic dysregulation.
The classical signalling mechanism for G alpha (i) is inhibition of the cAMP dependent pathway through inhibition of adenylate cyclase (Dessauer C W et al. 2002). Decreased production of cAMP from ATP results in decreased activity of cAMP-dependent protein kinases. Other functions of G alpha (i) includes activation of the protein tyrosine kinase c-Src (Ma Y C et al. 2000). Regulator of G-protein Signalling (RGS) proteins can regulate the activity of G alpha (i) (Soundararajan et al. 2008)
The class C G-protein-coupled receptors are a class of G-protein coupled receptors that include the metabotropic glutamate receptors and several additional receptors (Brauner-Osborne H et al, 2007). Family C GPCRs have a large extracellular N-terminus which binds the orthosteric (endogenous) ligand. The shape of this domain is often likened to a clam. Several allosteric ligands to these receptors have been identified and these bind within the seven transmembrane region