spacer
Collapse Statistics
241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last update: 11 Mar, 2019

spacer

CHEBI:16412

Name lipopolysaccharideC00338
Download: mol | sdf
Synonyms0Lipopolysaccharide;
Lps;
Na;
Definition Liposaccharide natural compounds consisting of a trisaccharide repeating unit (two heptose units and octulosonic acid) with oligosaccharide side chains and 3-hydroxytetradecanoic acid units (they are a major constituent of the cell walls of Gram-negative bacteria).
Molecular Weight
(Exact mass)
NA
Molecular Formula C5H7O8PR2
SMILES OP(O)(=O)OCC(COC([*])=O)OC([*])=O
InChI InChI=1S/C5H11O8P/c6-1-3(7)5(9)4(8)2-13-14(10,11)12/h1,3-5,7-9H,2H2,(H2,10,11,12)/t3-,4-,5+/m1/s1
InChI Key PPQRONHOSHZGFQ-WDCZJNDASA-N
Crosslinking annotations KEGG:C00338 | ChEBI:16412 | PubChem:3631

Pathway ID Pathway Name Pathway Description (KEGG)
map01100Metabolic pathwaysNA
map01503Cationic antimicrobial peptide (CAMP) resistanceCationic antimicrobial peptides (CAMPs) play an important role in host defense against microbial infection and are key components of the innate immune response. These are found among all classes of life ranging from prokaryotes to humans. In addition to the natural peptides, thousands of synthetic variants have been produced. CAMPs weaken the integrity of the bacterial inner and outer membranes and subsequently kill bacterial cells. On the other hand, bacteria have developed a number of mechanisms against CAMPs. These resistance mechanisms include decreased affinity to CAMPs by substitution of anionic cell surface constituents with cationic molecules; biosynthesis and crosslinking of cell envelope components; external trapping mechanisms that bind or neutralize the CAMPs by direct secretion of proteins, or the release of CAMPs binding molecules from the host cell surface; membrane efflux pumps; and production of peptidases.
map02010ABC transportersThe ATP-binding cassette (ABC) transporters form one of the largest known protein families, and are widespread in bacteria, archaea, and eukaryotes. They couple ATP hydrolysis to active transport of a wide variety of substrates such as ions, sugars, lipids, sterols, peptides, proteins, and drugs. The structure of a prokaryotic ABC transporter usually consists of three components; typically two integral membrane proteins each having six transmembrane segments, two peripheral proteins that bind and hydrolyze ATP, and a periplasmic (or lipoprotein) substrate-binding protein. Many of the genes for the three components form operons as in fact observed in many bacterial and archaeal genomes. On the other hand, in a typical eukaryotic ABC transporter, the membrane spanning protein and the ATP-binding protein are fused, forming a multi-domain protein with the membrane-spanning domain (MSD) and the nucleotide-binding domain (NBD).
map04010MAPK signaling pathwayThe mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli.
map04066HIF-1 signaling pathwayHypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis. It consists of two subunits: an inducibly-expressed HIF-1alpha subunit and a constitutively-expressed HIF-1beta subunit. Under normoxia, HIF-1 alpha undergoes hydroxylation at specific prolyl residues which leads to an immediate ubiquitination and subsequent proteasomal degradation of the subunit. In contrast, under hypoxia, HIF-1 alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 encode proteins that increase O2 delivery and mediate adaptive responses to O2 deprivation. Despite its name, HIF-1 is induced not only in response to reduced oxygen availability but also by other stimulants, such as nitric oxide, or various growth factors.
map05132Salmonella infectionSalmonella infection usually presents as a self-limiting gastroenteritis or the more severe typhoid fever and bacteremia. The common disease-causing Salmonella species in human is a single species, Salmonella enterica, which has numerous serovars.Following intestinal colonization Salmonella inject effector proteins into the host cells using a type III secretion system (T3SS), T3SS1. Then a small group of effector proteins induce rearrangement of the actin cytoskeleton resulting in membrane ruffles and rapid internalization of the bacteria.The T3SS2 is responsible for translocating effector proteins that direct Salmonella-containing vacuole (SCV) maturation. The majority of the bacteria are known to survive and replicate in SCV.
map05133PertussisPertussis, also known as whooping cough, is an acute respiratory infectious disease caused by a bacteria called Bordetella Pertussis. The characteristic symptoms are paroxysmal cough, inspiratory wheezing and post-tussive vomiting.Following the inhalation of respiratory secretions from an infected individual, bacteria enter the upper respiratory tract and adhere to epithelial cells. Several adhesion factors have been implicated: the filamentous hemagglutinin (FHA), fimbriae, and pertactin (Prn).Pertussis toxin (Ptx) and adenylate cyclase toxin (ACT) have been identified so far as major protein toxins of B. pertussis. PTX is a hexameric AB5-type exotoxin. Catalytic A subunit catalyzes the ADP-ribosylation of the Gi subunits of the heterotrimeric G protein, then inhibits multiple downstream pathways. ACT is able to penetrate the cytoplasmic membrane of host cells and becomes activated through the cleavage and the binding of calmodulin (CaM). Activated ACT converts ATP to cyclic AMP and subverts cellular signaling pathways.
map05134LegionellosisLegionellosis is a potentially fatal infectious disease caused by the bacterium Legionella pneumophila and other legionella species. Two distinct clinical and epidemiological syndromes are associated with Legionella species: Legionnaires' disease is the more severe form of the infection, which may involve pneumonia, and Pontiac fever is a milder respiratory illness.The pathogenesis of L. pneumophila is derived from its growth within lung macrophages. One of the L. pneumophila's type IV secretion systems, the Dot/Icm secretion system, is of critical importance for its ability to replicate and to cause disease. The Dot/Icm substrates modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. L. pneumophila also manipulates host cell death and survival pathways in a way that allows continued intracellular replication.
map05152TuberculosisTuberculosis, or TB, is an infectious disease caused by Mycobacterium tuberculosis. One third of the world's population is thought to be infected with TB. About 90% of those infected result in latent infections, and about 10% of latent infections develop active diseases when their immune system is impaired due to the age, other diseases such as AIDS or exposure to immunosuppressive drugs. TB is transmitted through the air and primarily attacks the lungs, then it can spread by the circulatory system to other parts of body. Once TB bacilli have entered the host by the respiratory route and infected macrophages in the lungs, they interfere with phagosomal maturation, antigen presentation, apoptosis and host immune system to establish persistent or latent infection.
map05332Graft-versus-host diseaseGraft-versus-host disease (GVHD) is a lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT) where immunocompetent donor T cells attack the genetically disparate host cells. GVHD pathophysiology can be summerized in a three-step process. Step 1 involves the development of an inflammatory milieu resulting from damage in the host tissues induced by the preparative chemotherapy or radiotherapy regimen. Damaged tissues secrete inflammatory cytokines, including interleukin 1 (IL-1), and tumor necrosis factor (TNF-alpha ). During step 2, antigen-presenting cells (APCs) trigger the activation of donor-derived T cells, which induce further T-cell expansion, induce cytotoxic T lymphocytes (CTL) and natural killer (NK) cells responses and prime additional mononuclear phagocytes to produce TNF-alpha and IL-1. Also, nitric oxide (NO) is produced by activated macrophages, and it may contribute to the tissue damage seen during step 3. During step 3, the effector phase, activated CTL and NK cells mediate cytotoxicity against target host cells through Fas-Fas ligand interactions and perforin-granzyme B.