241 human active and 13 inactive phosphatases in total;
194 phosphatases have substrate data;
--------------------------------
336 protein substrates;
83 non-protein substrates;
1215 dephosphorylation interactions;
--------------------------------
299 KEGG pathways;
876 Reactome pathways;
--------------------------------
last scientific update: 11 Mar, 2019
last maintenance update: 01 Sep, 2023
Bifunctional enzyme that catalyzes the enolization of2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into theintermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate(HK-MTPenyl-1-P), which is then dephosphorylated to form theacireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene)
Cysteine and methionine are sulfur-containing amino acids. Cysteine is synthesized from serine through different pathways in different organism groups. In bacteria and plants, cysteine is converted from serine (via acetylserine) by transfer of hydrogen sulfide [MD:M00021]. In animals, methionine-derived homocysteine is used as sulfur source and its condensation product with serine (cystathionine) is converted to cysteine [MD:M00338]. Cysteine is metabolized to pyruvate in multiple routes. Methionine is an essential amino acid, which animals cannot synthesize. In bacteria and plants, methionine is synthesized from aspartate [MD:M00017]. S-Adenosylmethionine (SAM), synthesized from methionine and ATP, is a methyl group donor in many important transfer reactions including DNA methylation for regulation of gene expression. SAM may also be used to regenerate methionine in the methionine salvage pathway [MD:M00034].
Methionine salvage is a sequential pathway of six reactions that create methionine from 5'-methylthioadenosine (MTA) which is a byproduct of polyamine biosynthesis in nearly all organisms. The process happens completely in the cytosol. It is important in humans for recycling of sulphur that has to be assimilated using energy